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FOREWORD

An important aspect of a successful program of highway maintenance
invelves the effective evaluation of pavements in their existing state,
The wave propagation method of nondestructive testing offers a potentially
valuable method for the determination of the properties of the various
structural units within a pavement.

To ascertain the feasibility of this method for pavement evaluation
a research group of the Department of Civil Engineering and the Institute
of Transportation and Traffic Engineering at the University of California,
Berkeley undertook a study of the wave propagation method of testing in
which special emphasis was placed on problems of interpretation of test
results., The work was commenced in January 1972 and supported by the
Transportation Laboratory of the Division of Highways, State of California
Department of Transportation under research technical agreement 13945-192234.
This report presents the results of this study.

At an early stage in the research, it was realized that there is an
important interaction between problems involving data interpretation
and equipment design and test procedures. Consequently, in addition to
analytic studies, an effort was made to evaluate the various versions of
the test equipment in use at present, Discussions were held with the
staff of the Transport and Road Research Laboratory, Department of the
Environment, U,K. and a visit was made to a site at Grangemouth, Scotland
where the wave propagation method was in use.

The general principles of the wave propagation method are discussed
in Chapter 1, Some of the basic phenomena of wave propagation are described
in Chapter 2 and the analytic methods developed for the study of waves in

layered media are presented in Chapter 3. A critical review of methods
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of interpretation of raw data from testing is undertaken in Chapter 4,
Chapter 5 summarizes findings from the survey of equipment design and
test procedures. There are eight appendices each dealing with special
aspects of the analytic treatment or the properties of materials. These
include descriptions of two computer programs developed during the course
of the project.

An improvement in the understanding of the theoretical principles
underlying the wave propagation method of nondestructrive testing has been
achieved but further advances will be required to take advantage of its
full potential, Recommendations are made for further research.

This report was prepared by Mr. D. J. Watkins with the guidance of
the faculty investigators, Professor John Lysmer and Professor Carl L,
Monismith. The project was administered by the Office of Research Services

of the College of Engineering, University of California at Berkeley.
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ABSTRACT

The wave propagation method for the nondestructive testing of
layered structures offers a potentially powerful tool to aid in the
design of new pavements and overlays. While early forms of the tech-
nique were reported in 1933, the method has remained, essentially, in
the form of a research aid, Widespread use has been restricted by the
complexity and expense of the equipment and predominantly by difficulties
in interpreting the raw data obtained in the field, There is a close
relationship between equipment design and the method used to interpret
the results,

The historical development of the technique is traced and the ad-
vantages and limitations of the modern procedures are considered. Basic
phenomena of wave propagation in layered elastic systems are studied,
Characteristics of the modes of propagation and the form of the solu-
tions to the secular equation are important elements in interpretationm.
Properties of singularities and other features occurring in these func—
tions are studied. Two methods for the analysis of wave propagation in
multi-layered structures are developed. One method is based on the
solution to the general equations of motion as constrained by the
boundary conditions imposed by the structure. The other involves
the discretization of a model of the structure into finite sub-layers
and the analysis of this system by the direct stiffness method. Com-
puter programs have been written employing both of these techniques.

The numerical methods required in these programs are developed and their
limitations discussed.

A critical review of interpretation techniques used to reduce

field data is presented and proposals for improvement offered. The




range of test equipment and operating procedures developed to date is
surveyed,

It is recommended that further analytic studies of layered struc—
tures subject to vibratory loading should be coordinated with field work

and well documented case histories.
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CHAPTER 1

INTRODUCTION

An effective pavement maintenance management program requires a
procedure by which the in-situ condition of existing pavements may be
evaluated., Such a procedure should have the capability to yield data
from which estimates can be made of the remaining life of the structure.
In addition, the procedure should provide data which is useful for
estimating the capability of the pavement to carry increased traffic
loads and for the design of overlays.

Unfortunately, no single test or observation can produce all of
the required information; accordingly evaluations must be based on
several types of data. Fig. 1.1 illustrates how such methods can be
combined to examim the problem of cracking associated with repetitive
loading. One part of the procedure involves a determination of the
in-situ elastic properties of the materials in the existing pavement.
Traditional methods of pavement design did not call for a detailed
knowledge of these properties. Advances in the ability to analyze
multi-layered structures subject to arbitrary loading by methods based
on elastic theory (Peutz, van Kempen and Jones, 1968) and the intro-
duction of the finite element method (Duncan, Monismith and Wilson,
1968) have required the development of methods for the determination
of the properties of each sub-unit of a pavement structure. Increasing
loads, particularly on airfield pavements due to the introduction of
wide bodied, large capacity aircraft have accented the importance of
these improved methods of analysis. Recent developments, such as

thick-1ift asphalt pavements, for which limited in-service performance




records are available, also require a technique which may be applied
without heavy reliance upon experience, since suf ficient time may not
be available to develop the necessary performance data, Analytic
methods capable of dealing with the generalized loadings imposed by
multiple wheels have recently been developed. See, for example,
Pichumani (1973) and Crawford (1972) who have gtudied pavement struc—
tures subjected to heavy aircraft loading. These methods require the
fundamental properties of the structural materials as inputs.

A method which offers considerable potential to provide the type
of data required to determine the material and geometric characteris-
tics of in-situ pavements is the wave propagation technique. It is a
n ondestructive method of testing which involves the excitation of the
pavement by means of a suitable vibratory source and the measurement
of the response of the structure to this loading.

Vibratory methods of testing layered civil engineering structures
have their origin in the field of pavement design, Their development
has been motivated by two classic testing principles; a) in-situ
testing is generally to be preferred over laboratory testing and
b) test loading conditions should, as far as possible, simulate working
loads. Two principal but separate methods have evolved over the years,
both of which test for the in—situ properties of a structure but with
only one involving a technique which attempts to simulate in-service
loading conditiocns. The history of the two methods are, however, very
much interrelated.

Historical Development of yibratory Testing Methods

Vibratory testing of highway subgrades was pioneered by the

German Society for goil Mechanics (Deutsche Forchungsgesellschaft fur
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Bodenmechanik, 1933, 1936, and 1938). With the exception of some
experimentation in the United States by Bernhard (1939) and in Sweden
by Bergstrom and Linderholm (1946), the method was next subjected to
study at the Royal Dutch Shell Laboratory in Holland by Van der Poel
(1948, 1951, and 1953), and Nijboer (1955). Their work has been ex-—
rensively reported in the literature. See, for example, Nijboer and
Van der Poel (1953) and Nijboer and Jones (1944).

The basis of the Dutch method is to measurée the response of a
highway structure to a dynamic loading designed to approximate the
loading induced by vehicular traffic. This is achieved by a machine
consisting, essentially, of rotating, eccentric masses and a ballasting
mass. The eccentric masses are driven at a steady frequency, designed
to simulate vehicles passing over the pavement, i,e.: between 10 and
100 cycles per second. The loading generated by the machine is trans=
ferred to the pavement through a plate, €.8.» 30 cm diameter.

The machine developed at the Royal Dutch Shell Laboratory Ppro~
duces forces varying between zero and 40 kn, TFigs. 1.2 and 1.3 illus-
trate the loading system. Due to the inertia of the system the pave=
ment reaction and deflection are not in phase with the force generated
by the rotating masses and, if the masses rotate sinusoidally with

time, the following relationships hold:

p="P eiwt (1.1
max

G (1.2)
max

z = 2 el(wt-s) (1.3
max

where
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Fig.1.2 SCHEMATIC OF FORCE SYSTEM FOR ROYAL
DUTCH SHELL MACHINE
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5 masses
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Fig. 1.3 PAVEMENT LOADING PRODUCED BY ROYAL
DUTCH SHELL VIBRATORY TESTING MACHINE




where

P = force due to rotating masses

R = pavement reaction

2 = deflection of pavement under center of loading
w = angular frequency of rotating masses

o = phase lag of R behind P

R = phase lag of 2 behind P

i=v=1

t = time
Nijboer and Van der Poel (1953) defined the ratio,

Rmax
s =~ (1.4)
max

as the stiffness of a road construction. By testing a variety of pave-
ments, it was possible to use this factor as a guide to the ability of
a structure to sustain traffic loading without distress. For example,
Nijboer and Van der Poel (1953), from empirical studies, proposed that

the stiffness required to prevent cracking of an asphalt surface is

200,000 kN/m.

In addition to stiffness measurements, it 1is possible to investi-

gate the characteristics of the surface disturbance produced in the

pavement, which propagates away from the vibratory machine, Dutch

workers achieved this by moving a detector progressively away from the

loading center and noting the distances at which the signal from the

detector was in phase with the sinusoidal motion of the vibrator. From

this data it was possible to compute the wave length of the propa~

gating wave.




The experiment was repeated at a number of different frequencies.
Assuming the waves to be shear waves and that those observed at high
frequencies propagate primarily in the near surface layers of the pave-
ment while low frequency waves are influenced by properties of deep
layers, it was possible to make estimates of the shear moduli of a
pavement structure.

The combination of stiffness and elastic moduli obtained from the
Dutch tests was employed by Nijboer (1955) as input parameters to
analyses of pavement models which yielded predicted pavement strains
which agreed well with strains measured under traffic loads. Improved
theoretical modelling of the vibrator/pavement system (Heukelom, 1961,
Heukelom and Foster, 1960) combined with extended experimental data
(Nijboer and Metcalf 1962) and refinement of the equipment (Klomp and
Niesman, 1967) has progressed these methods to such a stage that they
are in widespread use throughout the world. See, for example, Mucci
(1968).

In surveying the state of the art of dynamic testing of roads and
runways, Jones and Whiffin (1960) pointed out important differences
between the loading generated by the Dutch vibratory machine and that
imposed by traffic. The vibratory machine loads both the surface and
lower layers at the same rate of loading. A moving wheel loads the
surface with a stress pulse which rises from zero, reaches a peak,
and returnsto zero again in the time taken for the tire contact area
to travel over a point on the road surface. However, the load spreading
action of the pavement results in a stress pulse of longer duration and
lower intensity at deeper points. The experimental work of Nijboer and
Metcalf (1962) support these criticisms. Pavement deformation were

found to be greatest for static loads and to decrease with increasing




vehicle speed up to a constant value at about 25 km/hr. and different
relationships were found for different pavement sections; pointing out
the influence of the rates of loading.

These limitations in the ability of the system to simulate traffic
loading led a group of engineers at the Transport and Road Research
lLaboratory in England to develop a testing technique which relies upon
the observation of the surface waves propagating away form a simple
vibrator placed on the surface of a layered structure (Jones, 1968,
and Nair, 1971). Their approach assumes that the surface disturbance
produced by a source of excitation is some function of the geometry
and material properties of the layered system involved in the excita-
tion. If this is the case, it should be possible, theoretically, to
infer from measurements of the characteristics of the surface dis-
turbance details of the underlying structure.

The development of the experimental and analytic methods required
for the exploitation of this technique have been described by Jones
(1968) and Jones, Thrower and Gatfield (1967). Only the principal
elements will be outlined here. More detailed discussion will be
found in Chapters 3, 4 and 5.

Experimentally, the wave propagation method involves the measure—
ment of the phase velocity and wave length of the surface waves propa-
gating away from a vibratory source placed on the surface. A vibrator
is placed in position on the surface and set in operation at a constant
frequency. The phase angle of the sinusoidal vibration of this source is
then electronically compared with the phase angle of the excitation
produced in a detector placed at some known distance from the source.

Details of the electronic equipment used to obtain this comparison




vary considerably but Fig, 1.4 is a schematic of a typical arrangement.
Variations in the experimental procedure, which depend upon the equip-
ment type and purpose of the test, are also encountered. Commonly,
however, the pick-up is moved successively further away from the source
in constant increments of distance and the phase difference recorded

at each point. From the data thus obtained a plot of the type shown in
Fig. 1.5 is made. Similar plots are generated for waves produced by
the vibrator when operating over a wide range of individual frequencies.
The slope of the mean drawn through the points on these plots allows
the wave lengths and phase-velocity of the surface disturbance to be

computed from:

and c = L (1.6)
where L = the wave length of the surface wave

a/b

It

the slope of the phase difference/
distance curve

¢ = the phase velocity of the surface
wave

f = the circular frequency

A graphical representation of the relationship between phase velocity
and wave length, known as a dispersion curve, may be prepared from
this information. An example obtained from tests on the surface of
an experimental pavement constructed at Conington Lodge, England, is
presented in Fig. 1.6.

The interpretation of test results, presented in the form of
dispersion curves, requires a thorough understanding of the behavior

of wave propagation phenomena and considerable practical experience.
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Phase Difference
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Fig. .5 HYPOTHETICAL FIELD DATA FROM A WAVE
PROPAGATION TEST




This problem, sometimes known as the "inversion problem's has various
levels of difficulty, depending upon the type of information sought
and the complexity of the structure being tested. For example, the
curves presented in Fig. 1.6 may be interpreted, at the simplest level,
as follows. Assuming that the surface waves observed are of the Ray-
leigh type (see Chapter 2 for a discussion of wave types) and that at
high frequencies (short wave lengths) the disturbance is confined to a
region close to the surface, then, as the frequency is raised, the
phase velocities will asymptotically approach the speed of a Rayleigh
wave in the hot rolled asphalt surfacing., The points on Fig. 1.6 ob-
tained from the high frequency portion of the test are used to construct
Branch A of the dispersion curve and extrapolation to the zerc wave
length ordinate yields the Raleigh wave velocity for the surfacing.

The Raleigh wave velocity is defined as:

v-n/¢ e

where

Y = Rayleigh wave velocity

G = shear modulus

p = mass density

n = a factor depending upon Poisson's ratio V

If p and v for the surfacing are known, then the shear modulus G
may be computed. In the above example Y is estimated to be approxi=~
mately 1370 m/sec. For tests at very low frequencies (long wave lengths)
it may be assumed that the surface motion is dominantly affected by the

subgrade so that Branch B on Fig. 1.6 is asymptotic, at long wave

12
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lengths, to the Rayleigh wave velocity of the material at great depth.
In this case about 170 m/sec. The numerous points on Fig. 1.6 which
are not assigned to either Branch A or Branch B require the application
of more sophisticated theoretical analysis if they are to yield addi-
tional information about the properties of the pavement structure.

In recent years there has been considerable interest expressed in
the extension of the wave propagation method to applications in fields
other than pavement evaluation and design, in the improvement of equip-
ment and experimental techniques and, especially, in improved method of
interpretation of experimental data. French workers are active in the
extension of the work begun at the Transport and Road Research Labora-
tory in England and have made significant contributions by formalizing
much of the existing knowledge, improving equipment design and investi-
gating some of the theoretical problems. See, for example, Gramsammer
(1968) and Dosso and Keryell {1968). In the United States the U, S.
Army Engineer Waterways Experiment Station (WES), Vicksburg, have
studied the use of the method in the evaluation of the properties of
soil and rock at depth .(Ballard, 1964) and for site investigation for
the foundations of such structures as radar towers,

The Eric H. Wang, Civil Engineering Research Facility (CERF)} at
the University of New Mexico has been actively engaged in the design
of sophisticated equipment with a high degree of autcomatiom for the
testing of airfield pavements by this technique (Rao and Harnage, 1972,
and Rao, 1971). In Australia Kurzeme (1970b) has investigated the
use of vibratory testing using a source generating shear waves and in
Sweden the method has been used as a high speed technique to assess

the effects of changing traffic patterns on road foundations (Statens
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Vaginstitut, 1969)
- This widespread interest may be attributed to a number of advantages
which nondestructive vibratory testing methods offer.

Advantages of the Wave Propagation Method

1. The method is nondestructive.

2. The materials are tested in-situ, This eliminates the
need to account for a number of wvariables which are
difficult to reproduce with precision in the labora-
tory., For example, the confining pressure resulting
from a complex stress field,

3. Properties of the materials are determined over a
wide area rather than from a localized test sample.

4, Material properties are determined in the form of their
various moduli., This allows their use in rational
analyses of the response of the structure to loading.

5. There is a minimum of disruption te site activity.
This is of major importance in testing highway
pavements and alirport runways.

The limitations of the method must also be considered, however.

Limitations of the Wave Propagation Method

1. The stress levels induced in the layered structure
are generally much lower than those produced by the
working loads. As many natural materials have non—
linear stress/strain characteristics, moduli deter-
mined by the test cannot be used directly in the

analyses of structure under traffic loading. Modi-

LY

fications incorporating the effects of stress level

must be applied. (See Appendix 6).
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2, The equipment is relatively expensive,.

3. The complexity of the equipment and the need for a
rather sophisticated interpretation of the data requires
an operator with some knowledge of electronics, an under-
standing of the nature of wave propagation in layered
media and a considerable period of experience with the
technique. This may reduce the number of routine appli-
cations for which the method is viable.

4, The interpretation of the data is founded upon the

ability of theoretical analyses to correctly predict

the nature of wave propagating in layered media. At
present these methods are insufficiently advanced to

allow full advantage to be taken of data available

from tésting programs, Reliable information is available
for only the simplest of structures, such as a gingle stiff
layer over a soft half-space, and in many cases simpli-
fications and idealizations are used whose practical
implication are not fully understood.

This latter limitation is probably the greatest single problem
hindering the widespread use of the wave propagation method (Kurzeme,
1971). TIts solution requires advances in the quality of the theoretical
models used to represent practical structuresand the full expleitation
of existing analytic tools. The foundations of these analytic methods
are all based upon a mathematical representation of the basic phenomena

of wave propagation, These phenomena will be discussed in Chapter 2.
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CHAPTER 2

WAVES IN LAYERED MEDIA

Elastic Waves in Layered Media

There are two basic wave types which can exist in elastic media.
Such waves are propagated as dilational (P-waves) and rotational waves
(S-waves, frequently referred to as shear waves), Under certain unique
conditions these two basic wave types combine to form other waves which
have been assigned special names, such as, Rayleigh waves, Love waves
and Stonely waves. For example, Lamb (1904) demonstrated that Rayleigh
waves arise from the diffraction of curved fronts of P- and S-waves
at the free boundary of a homogeneous elastic bedy.

General Equations of Motion

The general equations of motion in terms of the rectangular co-
ordinate system (x , y , z) are, neglecting body forces, (Ewing,

Jardetsky, and Press, 1957):

2
37u 38 2
pg = (A+ 05+
ot
2
0 2Y - O+ 2 4 av?y (2.1)
2 oy
3t
-__—32“’ - 0+l V2w
P 3t2 B 3z

where

u, v and w are the displacements with respect to
the x, y and 2z axes respectively
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p = density
t = time
. G = the shear modulus
. A = Lame's constant
_ du, v, ety
6 = cpn + 5y + e {(the dilation)
2 2 2
V2 = the operator + d + 3
2 2 2
9x 9y oz

The cotresponding stress-strain

relationships are:

o = A +2628
XX ER4
o oftu, by
0y = G[ay , ax]
v oW
Gyz G[az + 8y]
o] = ABb + 2G S
zZ 9z
) ow oJu
sz G{§§-+ Bz}
The velocity of P-waves (o) and of g=waves (B) in a linear

elastic material (Fung, 1965)

are given by:

(2.3)

(2.4)




Plane Waves

There are many instances in which wave propagation in a system of
elastic layers reduces to an essentially plane problem, so that the P~
and S-waves do not depend upon y , the axis normal to the plane of
the paper in Fig. 2.2. To simplify the discussion it will now be
assumed that there are no body forces and only plane waves are generated.

Thus the equations of motion (Eq. 2.1) reduce to:

2
038 o o+ 20 &+ v
2 9x
at
(2.5)
3w 36, o2
p—= = (A + 2G) =—+ GV'w
2 oz
3t
2 2
where Vz = the operator é—*-+ a .
2 2
ox 3z
Eqs. (2.5) can be simplified if they are expressed in the form:
329 2.2
_%=av¢
ot
and (2.6)
)
99 _ B VY
2
ot
where,
4 = 20 _ 3
ax 3z
and 2.7
39 _ 9y
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¢ and P are known as displacement potentials and an examination
. of Egqs. (2.5) and (2.6) will show that ¢ 1is associated only with the
P-wave and Y only with the S-wave.

Eqs. (2.6) are solved by making the trial substitutions

S
1l

£(z) exp (ik

(2, x + n,z))
( ¢ ¢ (2.8)
= z) exp (ik, (& x + n,z
¥ g(z) exp ( ub(lb v 2
where
i k¢ = w/a
klp = w/B
= the frequency of the excitation
i 2 and n = the direction cosines of the normal to
the advancing wave with respect to the
x and 2z axes respectively
!; ¢ = the apparent velocity of the advancing
wave
) i = /-1
The general solutions for £(z) and g(z) in Egs. (2.8) are:
= 1 i ' .k 2( - Nn. 2z
£(z) A exp(1k¢(£¢x + n¢z}) + Blexp (i ¢( ¢x ¢ )
and (2.9)
= ' i + D' ik— 9, - n,Z
g(z) C exp(lkw(ﬁwx + nwz)) exp( qJ( WX " })

so that the potentials take the form:




L]

(¥

L]
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=
]

{A'exp(ik¢(2¢x + n¢z)) + B'exp(ik¢(£¢x - n,z))}exp(iwt)

)
l1“%:{ + an)) + D'exP(ikw(wa - nwz))}exp(iwt)

2.10
v = {C'exp(ik ( )

where A' , B' , C' and D' are constants which can only be determined
by the application of the boundary conditions for the system to be analyzed.

The Boundary Between Two Elastic Media

The principal boundary conditions to be considered in the analysis
of waves propagating in layered media are those impeosed at the inter-
face between two layers. Consider a P-wave travelling in layer 2 of
Fig. 2.1 incident at some angle ¢ to the interface. This wave will,
in general, produce compressional and distortional (P and §) waves
in both media. Four boundary conditions must be satisfied, requiring
continuity of the two components of displacements, u and w, and of

the two stresses, Gzz and Ozx’ across the interface, i.e.

u, =u W, =W
1 2 1 2 (2.11)
[Gzz]l = [Uzz]Z [sz]l = [Ozx]Z
The direction cosines required for the scolution of Egs. (2.10)
can be obtained from Snell's Law:
o 8
c %2 8, 1 1 (2.12)

Cos q Cos p Cos £ = Tos p'  Cos £°
where

c = apparent velocity of wave propagation 1n
both media (since the boundary conditions

Egqs. (2,11) are independent of x and t)
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Fig. 2.2 REFLECTION OF S WAVES AT AN INTERFACE
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There is a certain critical value of the angle q beyond which no
energy is reflected from the boundary to penetrate back into the lower
medium (1). Thus, designating the critical angle for the reflection of

P-waves P. » two conditions are possible,

angle p will be real
and angle p' imaginary

and

2, qzrp angle p will be imaginary

. and angle p' real

At this stage it will be convenient to simplify the wave equations

(Egqs. 2.10) for each of the waves in Fig. 2.1 to:

- ¢, = {A'exp(ikrlz) + B'exp(- ikrlz)}exp[ik(ct - x)]
P, = {C'exp(iks.z) + D'exp(- iks. z)lexp[ik(ct - x)
1 1 1
: (2.13)
¢2 = E exp(ikrzz) « explik(ct - x)]
= F exp( - iks,.z) - exp [ik(ct - x]
2 P 2
and
r = v c2/0L2 -1 for C>ao
r = =-i¢ 1- cz/d? for C> 0o
—_—— (2.14)
s = /czlﬂz—l for C > B
s = ~-i // 1- cz/ﬁ2 for C < 8

By the application of trigonometric identities it can be shown that
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r = Cot p
5 and (2.15)
) g = Cot f
N For ¢ < &, mo disturbance is transmitted into the interior of

the upper layer because by Eq. (2.12) p' is imaginary. However, this

does not mean that there is no disturbance in the upper medium. There

is, in fact, a disturbance which propagates along the interface,decreasing
. exponentially with the distance away from it in both the +z and -z

directions. The effect on the wave reflected back into the interior

of the lower medium (P(B') in Fig. 2.1) under these circumstances is to

produce a phase shift such that the first equation of Eqs. (2.13) may

be expressed as

¢l = A'exp(ikrlz) + expl[ik(ct — x)] + A'exp(- ikrlz)

« explik(ct — x}] - exp-%?

where € is a function of the incident angle q for 0 <gqg <p,
(Bwing, Jardetsky and Press, 1957).

Similar arguments can be made for the case of an incident S-wave
of the type shown in Fig. 2,2, When both an S-wave and a P-wave travel
simultaneously, and confining attention to conditions within a single

layer the motion can be described by the equationss

{A Sinh(ikrz) + B Cosh(ikrz)ltexplik(ct - x)]

=
|

(2.16)
{C GCosh(iksz} + D $inh(iksz)texp[ik(ct - x)]

+
=
I
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where by reference to Eqs. (2.10) and Egs. (2.13)

|_A+B |__B""A
A= B ==
(2.17)
C+D C-1D
L L.
=" D=3
and
k = w/c
¢ = apparent phase veloccity

which is a convenient form for use in analysis.

For a multi-layered system of elastic media composed of n layers
there are 4n - 2 boundary conditions to be satisfied: continuity of
two displacement components and two stress components at each inter-
face, and the vanishing of two stress components at the free surface.
Using Eqs. (2.5), Egqs. (2.7) and Eqs, (2.16) to obtain the mathematical
expression of these conditions leads to 4n — 2 homogeneocus simultaneous
equations to determine an equal number of constants of the type A, B,

C and D in Egs. (2.16). The solutions to these sets of equations

are usually extremely complex and pose many numerical problems. How-
ever, there are two special cases which are somewhat simpler and which

can give valuable insights into the basic phenomena associated with the
propagation of waves in layered elastic media, These are the homogeneous,
isotropic half-space and the single elastic layer over a rigid solid.

The Homogeneous and Isotropic Half-6pace

The boundary conditions for a half-space are zero stresses at the

free surface and zero displacement or velocity at infinite depth, Using




Eq. (2.3), Eq. (2.4), Eq. (2.7) and Eq. (2.16) with these boundary
conditions gives A =3B and C =D so that in determinant form the

problem reduces to

Gb 2Gs
=0 (2.18)
2Gr Gb
2,2 .
where b =2 - ¢”/B” or more simply
2
b™ - 4sr = 0 (2.19)

Expanding the terms b, 8 and r and factorizing out the quantity
2,,2 R
e /B gives,

27821c8/88 - 8ch/g + c224/8? - 16/0%) - 16Q1 - 82 /0%)]1 = 0 (2.20)

which is the form usually found in the literature (e.g. Ewing, Jardetsky
and Press, 1957).

For the purpose of illustration it will be assumed that the half-
space is a Poisson solid (i.e. A =G or a = Y3 + B) . In this case

Eq. (2.19) has the following real roots.
¢ /B = 4, 2+ 2/¥3 and 2 - 2/V3 .

The first two of these roots are usually rejected as they would
require that r and s in Eqs. (2.16) become positive imaginary which
is not compatible with the requirement that the disturbance decrease
rapidly with depth, 2z , from the surface. The wave corresponding to
the last root (c2/82 = 2 - 2//3) 1is a surface wave of the classic

type described by Rayleigh (1885). Richter (1943) raised the question
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of the physical origin of the alternative roots and this problem was
pursued by Fu (1950). For a Poisson solid there are certain angles

of incidemce to the free surface for which an incident P-wave gives

rise to only the reflected S-wave and, similarly, where an incident
S-wave produces only a reflected P-wave, These conditions correspond

to the "extraneous'" roots of Eq. €.19). For materials other than Poisson
solids there may be roots which require that r and/or s become complex
which indicates inhomogeneous waves. For a material in which o/f = 1.788
Walker (1919) found that the reflected P-wave will not wvanish but that
its amplitude attains a minimum at an angle of incidence near 20°.

Miller and Pursey (1955) determined that the distribution of total input
energy among P-waves and S-waves in the body and surface waves at the

free surface of an elastic half-space is as follows:

Wave Type ‘% of Total Energy
Rayleigh 67

S 26

P 7

The Rayleigh wave is the surface wave corresponding to the root of

Eq. (2.19) which yields real values for the radicals r and s (e.g.
c2/B2 =2 -~ 2/Y 3 for a Poisson solid). This wave type is of major
concern when dealing with problems involving sources of excitation at
the free surface. The relationship between the velocity of this wave,

Y , and the velocity of P-waves and S-waves is a function of Poisson's
Ratio, v , for the material comprising the half-space. This relation-—
ship is showm in Fig. 2.3. The close approximation between the R-wave
and S-wave velocities throughout the range of Vv has encouraged the

use of the approximation:

(2.21)

~
}
ko>
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in many practical applications,

For a Poisson solid the roots of Eq. (2.19) may be represented
graphically as shown in Fig., 2.4, It is important to note that, for
each curve, the slope w/k = ¢ (the phase velocity) is constant and
does not vary with the frequency of excitation w . The significance
of this fact will be discussed later.

Single Elastic Layer Over a Rigid Solid

In this case the boundary conditions are zero stress at the surface
(Gzz =0, = 0) and zero displacement or velocity (& =w=0) at the
interface between the bottom of the elastic layer and the rigid solid,
which will be assumed to be in welded contact. Applying these constraints

and using Eq. (2.3), Eq. (2.4), Eq. (2.7) and Eq. {2,16) yields a deter-

minant expression:

Sinh(irkd) + zis Sinh (iskd) sCosh(iskd) - 355 Cosh (irkd)
=0 (2.22)
-rCosh(irkd) + % Cosh (iskd) Sinh(iskd) + g%E'iSirm(irkd)

where the variables are as defined previously for Eq. (2.18). There
are an infinite number of discrete values of the wave numbers k which
satisfy this equation at any particular exciting frequemcy W . The
relationships between frequency and five of these roots are shown in
Fig.2.5 for a Poisson solid of unit depth over the rigid solid. Curves
of the type given in Fig. 2.5 are known as spectral lines. The solid
lines lie in the w-Real(k) plane and represent real wave numbers.,

The short dashed lines lie in the w~Imaginary(k) plane and represent
purely imaginary wave numbers. The long dashed lines are curves in

the w-Real(k) - Imaginary(k) space which represent complex wave




0 T ! ! T

//

i c%/9% 4// //62/'32 “2r2d
a /

/
- ///
- //

//
w 5 //

Rayleigh Wave

/3

1.0

@
g

l | |

{

|
o 5
K

10

Fig. 24 w/4 RELATIONSHIP FOR A HALF-SPACE

OF A POISSON SOLID

30




31

~/0 5 /
'4
/
/
/
/ /
/
/
/
!
!
!
I »
!
,’ / ;" !" ,' Real (k)
# / 7H— 7 7
'4,' 2 i/0) | 2 4 6
! i' |
! ¥ g
J I
] |
| 4 |
| ]
|
I - ¥
Imag.(k/

Fig. 2.5 SPECTRAL LINES FOR WAVE NUMBERS OF
HOMOGENEOUS ELASTIC LAYER OVER ROUGH

RIGID BASE




numbers, Sets of spectral lines with similar characteristics to those
in Fig.Z5have been presented for extensional waves in semi-infinite
hollow elastic rods by McNiven and Shah (1966), Since Eq. (2.22) is an
analytic function in ®w and k it may be proven that the spectral
lines intersect the planes w = 0 , Real(k) = 0 , and Imaginary(k) = 0
at right angles. In addition, when a complex branch intersects the
real plane it does so at a point on a branch in the real plane where
the slope is zero. Appendix 1 outlines a proof of the above conditions
in a similar manner to that developed for waves in elastic hellow rods
by McNiven, Shah and Sackman (1965) and McNiven, Sackman and Shah (1965)
or for solid rods by Onoe, McNiven and Mindlin (1962).

Fig.2,5 implies that at any given frequency, w , the motion at the
free surface may be thought of as resulting from the combined action of
an infinite number of waves, each corresponding to a particular root of
Eq. (2.22). Thus, although the motion may be extremely complex, it is
possible to break it down into component parts the mathematical expres-—
sions for which are relatively easy to associate with their physical
behavior, Fig. 2.5 contains all four possible conditions for the wave
number k . The physical significance of each type is summarized below.

Wave TXEes

The motion of particles associated with any root of Eq. (2.22) may

be expressed as

u(z) « exp(iwt - ikx)

O
I

(2.23)

and

w(z) * exp(iwt — ikx)

o
i
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where u(z) and w(z) are the horizontal and vertical displacements
respectively, as defined by Eqs. (2.7), the magnitudes of which are a
function of the depth, z , below the free surface. As k may be real,

imaginary or complex Eq. (2.23)may describe any cne of the following

wave types.,

1. If k is complex

exp (iwt — ikx) = exp(kzx) + exp(iwt - iklx)
(2.24)
where k = kl + 1k2 .
Then Eq. (2.23) describes a motion which propagates in the
x—direction with the phase velocity c¢ = w/kl but decays
or increases in amplitude depending upon the sign of k2.
This type of motion will be called a decaying mode.
2, If k idis real
exp(iwt - ikx) = exp(iwt - iklx)
(2.25)
as k2 =0,
This motion propagates in the x direction with constant
amplitude and will be called a real mode.
3, If k is imaginary
As kl =0
exp(iwt - ikx) = exp(kzx) « exp(iwt) . (2.26)

This type of motion will be called an exponential mode.

There is no propagation in this case.
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4, If k=0
Now
exp{int - ikx) = exp(iwt). (2.27)
This condition corresponds to a standing P - or
S-wave which travels vertically through the elastic
layer. Such a mode will be called a pure P-mode or

pure S-mode depending on the type of standing wave.

I1lustrations of these various wave types are given in Fig. 2.6,
The existence of a decaying mode in a perfectly elastic layer bounded
at the surface by vacuum and at the base by a rigid solid deserves
some explanation. Such a mode would normally indicate that energy is
being lost from the system; for example, by conversion of kinetic
energy into heat in a medium with material damping. No such energy
loss can occur in the system considered here. However, as shown in
Fig. 2.5 the complex branches of the spectral lines occur in pairs with
wave numbers k = kl - ik2 and k = —kl - ik2 which are equal in

their absolute magnitudes. This means that the net transport of

energy to x = +  1is zero.

Dispersion

It was noted previously that the phase velocity ¢ = w/k was a
constant in the case of wave propagation in a homogeneous elastic half-
space. This is not the case for any of the branches in Fig. 2,5. Here
¢ = f(u) and the system is said to be dispersive. Graphical repre-
sentations of the secular function have traditionally been known as
dispersion curves although only the projection of the function on to

the real plane are normally presented. Dispersion curves are also
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commonly plo:ited on the axes frequency (or period) against phase

velocity c¢ .

A Multi-layered Half-space

It is only in a few cases that a homogenecus layer exists whose
thickness is so great, compared with the wave length, that the theories
for a half space are applicable. Equally, a single layer over a rigid
solid is of minimal practical significance, althoughthis model may
approximate a soft deposit over a hard rock stratum. However, the
principal phenomena described in the previous section are all present
in multi-layered systems but are superimposed in a very complex manner,
The ability to analyze complex structures,and ideally a generalized
multi-layered system, is of great importance to the progress of the
wave propagation method of testing in-situ structures. Some approaches

to this problem will be discussed in the next chapter.
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CHAPTER 3

METHODS FOR THE ANALYSIS OF WAVE PROPAGATION IN LAYERED MEDIA
The desire to understand the mechanism by which seismic tremors

propagate through the earth and along its surface led the early geo-
physicists to attempt the development of analytic methods for the study
of these phenomeng. The nature of disturbances excited from within
an infinite elastic body was well understood by the mid nineteenth
century, for example, Stokes (1849), but the first major contribution
to the understanding of the transmission of seismic waves was made by
Lord Rayleigh (1885)., By the application of elastic theory he was
able to analyze the nature of waves at the plane surface of a semi—
infinite solid. However, the recognition that the earth's crust is
composed of layers having marked differences in their properties re-
quired investigation of more complex situations. Bromwich (1898) made
the first analysis of the case of a plane surface layer bonded to a
semi~infinite solid and a comprehensive treatment of this model was
presented by Love (1926). Further work on this model has been under-—
taken by many authors including Fu (1946a and 1946b) who used an
approach based on matrix algebra which gives useful insights into some
of the basic phenomena in a manner similar to that used in some of the
more modern analytic techniques. The efforts of these workers greatly
advanced understanding of wave propagation phenomena,such as the ef-
fects of surfaces and interfaces on wave propagation. A number of
basic ideas have been presented in the previous chapter. The general
case of a multi-layered system is so complex, however, that significant

advances in understanding could only make for simplified and idealized
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models of special cases. Many of these models, nevertheless, contributed
greatly to geophysics as they simulated many of the situations
actually founded in the earth's crust, such as liquid to solid con—
tracts and surfaces of separation between two solids., See, for
example, Stoneley (1924) and Tolstoy and Usdin (1953). Comprehensive
reviews of the available method for treating the problems of two and
three layered media are to be found in Ewing, Jardetsky and Press (1957),
Brekhovskikh (1960) and E;rvenﬁ and Ravindra (1971), who also discuss
problems involving the multi~ layered case. With the exception of
Sezawa (1938), researchers were interested in analyzing systems in which
rigidity increased with depth, which is the case in practically all
geophysical instances, Sezawa (1938) concluded that above a certain
frequency surface waves could not be propagated in systems in which
rigidity decreased with depth. The phase velocity corresponding to
this limiting frequency was predicted to be that of a shear wave
propagating in the softer, deeper material. However, in studies under-
taken for the wave propagation testing technique, Jones (1962) showed
that this conclusion 1is untrue and that surface waves can be propa=-
gated at velocities greater than the shear wave velocity of the less
rigid substratum.

Unlike geophysical problems,many engineering applications involve
the propagation of dynamic waves in structures which are stiffer than
the materials upon which they are founded. The dynamic testing of
pavements poses a classic problem of this type and after Sezawa (1938)
the next study of a surface layer bonded to a softer substratum was
undertaken by Pickett (1945) in connection with this type of work. A

case, in which the ratio of the velocity of propagation of shear waves
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in the upper layer to that in the lower layer was 1.4l was analyzed .
He showed that at high frequencies the velocity of the surface

wave is asymptotic to the velocity of a Rayleigh wave in the upper
material; at low frequencies to that of the substratum.

The mathematical difficulties involved in the analyses of multi-
layered systems forced engineers to study simplified models and special
cases in an approach similar to that taken by the geophysicists, The
models studied and the approximations made were influenced by empirical
data obtained from field tests,mainly on highway pavements. Some of
the work was directed to interpret results from tests with the heavy
vibrators used to measure the dynamic stiffness of pavements. Methods
based on elastic theory, for rotating mass vibrators on semi-infinite
solid, were available ( Reissner, 1936 and Sung, 1953}, Most of these
analyses involved modelling the vibrator/pavement system by various
spring, dashpot and mass systems. See, for example, Jones (1958) and
Heukelom and Foster (1960). Certain special cases were open to solu-
tion by established methods. Noting Pickett's (1945) earlier work
Jones (1955) approximated a concrete road slab resting on a soft base
to an elastic plate without support. He then applied Lamb's (1916)
solution for this case and was able to use this analysis to evaluate
the thickness of pavement slabs from the results of wave propagation

tests.

Methods for Solution of the General Equations of Motion

Jones (1962) also applied the elastic theory to analyze layered
systems which approximate more general pavement structures. His approach
is similar to that ocutlined in Chapter 2 in which the boundary condi-

tions imposed by the surface and the layer interfaces are used to




obtain appropriate forms of the general solution to the equations of

motion for wave propagation., Three types of structure were considered:

1. A layer of material over a semi-infinite half-space

of lower elastic modulus,

2. As in 1 but with an intermediate layer having elastic
properties such that the compressional wave velocity

is less than in the underlying medium.

3. As in 2 but with the intermediate layer having elastic
moduli comparable with those of the surface layer but
considerably greater than those of the underlying

medium,

In each case it was assumed that the layers were homogeneous and
elastic and infinite in both horizontal directions. Only plane waves
were considered. In application to the interpretation of results

from the wave propagation method this approximation is reasonable.
Although the vibratory source is in practice applied to a circular

area of finite radius, the asymmetric waves propagating into the struc—
ture become almost identical with plane waves within a very short
distance from the source. The general solutions for these multilayered
cases take the form of families of secular lines in complex space
which exhibit characteristics similar to those illustrated in Fig. 2.5
for a single layer over a rigid half-space. The derivation of quantita-
tive results poses many analytic and numerical differences. However,
by making certain simplifying assumptions Jones (1962) was able to
obtain approximate solutions for certain frequency ranges which are of

considerable practical importance.
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For Case 1 the underlying semi-infinite medium was assumed to
have a Poisson's ratio of 0.5 and a velocity of propagation of shear
waves so low compared to the overlying layer that it could be treated
as a liquid. By considering the solutions to this simplified problem
in the limiting cases of high frequencies (very short wave lengths) and
low frequencies {(long wave lengths) and with the aid of techniques
developed by Osborne and Hart (1945), for the analysis of submerged
plates , the results shown in Fig. 3.1 were obtained.

For Gise 2 of a double layer over a half-space Jones (1962) assumed
that the intermediate layer as well as the substratum could be treated
as a half-space. For Case 3 it was assumed that at high frequencies
the two layers responded to excitation independently of the subgrade
and the system was analyzed as a composite free plate. Thus, Jones
(1962) made simplifying assumptions in each case and, while some ex-
perimental results agree weéll with this approximate theory, the analysis
breaks down in the intermediate frequency and velocity ranges and does
not explain some of the modes of propagation actually observed in the
field. Valuable insights were gained, however, and later work enabled
some of the analyses to be refined (Jones and Thrower, 1965b). Jones
and Thrower (1965a) were also able to show that an assumption of
welded contact between layers was valid in application to analysis of
wave propagation testing of pavements.

Jones' work was extended by Vidale (1964) who studied the same
basic structures but included the shear rigidities of all layers, in-
cluding the half-space, and investigated the properties of dispersion
curves in the intermediate velocity ranges. Vidale (1964) was able to

improve the understanding of some of the basic characteristics of
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dispersion curves for a number of typical pavement structures and this
work has been used successfully as an aid in the interpretation of
wave propagation test data. For the more complex structures, however,
a number of uncertainties remain. The problems stem largely from

the numerical problems involved in obtaining the roots to the secular
equations and the numerous singularities present in the solution.

The results obtained will be discussed further in the next chapter.
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A method of analysis in which the equation of motion for a generalized

system of elastic layers overlying an elastic half-space are formulated in

matrix algebra was proposed by Thomson (1950), improved by Haskell (1953)
and presented in the form of a computer program by Press, Harkrider

and Seafeldt (1961). This formulation is well suited to solution with
the aid of a digital computer but there remains a number of difficulties
in applying the method directly, particularly to problems involving
structures in which rigidity decreases with depth. These difficulties
arise primarily from the fact that the analysis involves the use of
hyperbolic functions, which may become numerically very large, and

the peculiar behavior of solution in certain regions which renders
numerical values of the solution very difficult to obtain. The extremely
high accuracy required of the computation if details of the displacement
field are to be computed is also a disadvantage of the method. Quanti-
tative solutions also require that a first approximation to amy desired
root (of which tﬁere are an infinite number) is used to initiate the
procedure. Due to the present limited knowledge of the form of the
secular lines for many problems, this can be a severe limitation.

Thrower (1965) has discussed many of these problems and proposed a

method by which improved numerical results may be obtained for certain

cases.
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The approximation that practical structures are composed of purely
elastic materials is not unreasonable when the empirically observed re-
sponse of many materials, particularly soils, to dynamic loadings is
considered. Theoretical models would, of course, be improved by the
addition of factors to account for internal damping. In addition, it
has been found that the singularities in the solutions for wave dis-
person in elastic systems are not present in the secular lines for
structures formed of viscoelastic materials. By defining the various
moduli of viscoelastic materials in the form of a complex number it
is possible to incorporate this improvement in analyses with a minimum
of effort, The rheological characteristics of soils and bituminous
concrete and the method of complex moduli are discussed in Appendix 6.

A method for the analysis of wave dispersion in generalizedq, layered,
viscoelastic structures resting either on a viscoelastic half-space
or a rigid solid is presented in Appendix 2. The method is based on
Haskell's (1953) matrix formulation, A discussion of the limitations
and numerical difficulties of this method are also discussed in more
detail in this appendix. A computer program (HASK) which takes ad—
vantage of the complex algebra capability of the FORTRAN language to
incorporate the ability to analyze viscoelastic systems defined with
the aid of the method of complex moduli is described in Appendix 3.

The program is derived from the analytic methods described in

Appendix 2.

Despite the increasing sophistication of the analyses discussed
above, they are all based on the game fundamental approach. That is,
the application of various boundary conditions to the general equations

of motion and the solution of the resulting differential equations.
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¥or this reason they all exhibit characteristics which make for serious
difficulties in their quantitative solutilon,

Solutions Using Discretized Medels

The establishment of the finite element technique as one of the
most powerful numerical methods used in engineering analysis (Zien-
kiewicz, 1971) has encouraged its application to problems and situations
involving dynamic loading. See, for example, Costantino (1967). For
most dynamic problems, however, the finite element method involves
the manipulation of very large matrices which often demands storage
capacity which can only be provided by the largest digital computers,
if at all, The computations may also be correspondingly costly.

These problems are particularly acute in geotechnical applications.

For all practical purposes the earth is of infinite size, while any
model of a structure resting on the earth must, by necessity, be
bounded at finite distances. Thus, when using discretized models,
there is always the need to compromise between the accuracy of the
model and the finite capacity of the computing facilities. TFor the
case of wave propagation in layered media this problem was considerably
reduced by Lysmer (1970) who developed a method for discretizing a
layered structure into a series of layers of infinite horizontal ex-
tent, In this manner the discretized models is confined by only one
finite boundary; that at the bottom. This model may no longer be
strictly referred to as a finite element discretization, as the layers
are, by definition, not finite. Based on the fundamental approach
employed by the technique this will be designated the "direct stiffness"
method, Lysmer and Drake (1972) have illustrated the use of the method
for the analysis of both Love and Rayleigh wave propagating in hori-

zontally layered media.
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By considering discretized units composed of layers of infinite
horizontal extent Lysmer's (1970) direct stiffness method lacks the
generality which is one of the strongest features of the finite ele-
ment method. By considering a model composed of three zones, Waas
(1972) was able to restore this ability of the finite element method
to deal with very complex geometries while maintaining the advantage
of a model extending to infinity in the horizontal dimension. Fig. 3.2
shows a typical structure discretized in this manner. The irregular
zone (I) contains all the complex geometry, zones of varying material
properties and external loading. It is discretized into finite ele-
ments., Zones L and R are simple layered structures (each layer may
be composed of a different material) with each layer extending to
infinity in the y and left and right x directions respectively.
The analysis of the irregular zone follows the established finite
element formulation while Zones L and R are treated in the manner
proposed by Lysmer (1970). By considering the boundary conditions
at the interfaces between the zones the excitation field for the com-
plete system may be computed. The theoretical development of this
method of analysis is outlined in Appendix 4.

This direct stiffness analytic technique offers a number of ad-
vantages over the traditional methods for solution of the equations of
motion. Due to the discretization of the model and its finite (or
semi—infinite) dimensions there are a finite number of solutions to
the secular equation for any model. Further, mathematical techniques
are available which allow all of the roots to be obtained without
ambiguity. The computation of mode shapes is easily performed and

does not require numerical accuracy in excess of that required to
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obtain the basic characteristics of the wave form (e.g., the wave
number). As it is possible to model the loading of the structure,
it is also possible to compute the amplitude of excitation at any
point within the field or on the surface at any distance from the
source. The contribution of each mode of propagaticn to the total
amplitude may also be computed and this provides the possibility of
discriminating between modes which contribute heavily to the surface
motion detected by instruments in a vibratory testing gituation and
those modes which are of little practical significance.
The formulation of this method of analysis is well adapted for
use in the form of a computer program and may be used to solve problems
involving viscoelastic material properties with no added difficulty.
Tn summary, the direct stiffness method is capable of providing the
maximum of detailed information with a minimum of numerical difficulies.
A computer program based on this method, designed to analyze plane
propagation in horizontally layered systems, is presented in Appendix 5.
However, despite the significant advantages of the direct stiff-
ness technique, it suffers from two major practical limitations. The
discretized model is not capable of simulating a prototype composed
of layers resting on a semi-infinite half-space. The base of the model
will always represent a rigid solid, as shown in Fig. 3.2. In a majority
of practical engineering situations, particularly in application to
pavement analysis, it is more accurate to assume that the structure
rests on a relatively soft material of infinite depth, The rigid
base of the model introduces a surface from which impinging energy may

be reflected back into the structure when in fact no such reflector

exists in nature. While modifications of the rigid boundary have
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been proposed (Lysmer and Kuhlemeyer, 1969 and Ang and Newmark, 1971)
and have been demonstrated to be successful in absorbing a majority
of the impinging energy (Hadala, 1971), no fully satisfactory boundary
has been developed which can be used where there is a steady state
source of excitation. A discussion of the problem of a finite model
of an infinite prototype and a method for minimizing energy reflection
from the base of a discretized model will be found in Appendix 4.

The accuracy of the direct stiffness method is dependent upon
the size of the elements into which the model is discretized. Shipley,
Leistner and Jones (1967) observed that finite element models behave
like low pass filters having definite passing bands and cut-off fre-
quencies and that the cut—off frequency dependsupon the wave type and
finite element mesh, From experience in the use of the finite ele-
ment method for the solution of wave propagation problems, Kuhlemeyer
and Lysmer (1973) recommend that the maximum length of an element {or
depth of a layer in the case of Zone L and R in Fig. 3.2) should not
exceed one—eighth of the wave length of the slowest body wave propa-
gating in the material for analysis of two— or three-dimensional
layered media. Even when Lysmer's (1970) method of discretizing into
layers of infinite horizontal extent is used, this restriction often
generates linear algebraic equations involving matrices of very large
dimension. Models of pavement structures resting on soft materials
will thus require extensive computer core for their solution and the
cost of the computations will be correspondingly high. This problem
is aggravated by the desire to place the artificial rigid base of
the model at the paximum possible depth so as to minimize its influence

on the surface excitation.
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Summary

Thus, there are presently available two basic approaches to the
problem of the analysis of wave propagation in layered media. One
approach attempts the solution of the basic equations of motion in
differential form. These methods result in expression which pose
a number of serious difficultiles to numerical solution. Secondly,

a structure may be simulated by a discretized model which may be analyzed
with relative ease to yield a maximum of information about the nature

of the excitation. These models, however, may not always provide
realistic simulations of practical structures and solutions using

this method may be excessively costly.

The wave propagation method of testing relies on the ability to
interpret the data obtained in the field so that the characteristics
of the structure beneath the surface may be determined. This inter-—
pretative ability relies, fundamentally, on comparison of the field
data with the expected behavior of typical man-made or natural struc-
tures which have been simulated in theoretical analysis. This problem
of determining the structure associated with a given set of data (dis-
persion curve) is very complex, and it seems as yet uncertain under
what conditions unique solutions exist (Alekseev, 1962 and Knopoff,
1962). Detailed analytic solutions for many of the more complex, but
practically important, structures are lacking but by comparing empirical
data with the available analytic solutions a considerahle amount of

useful information can be obtained. The next chapter discusses these

interpretative techniques.
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CHAPTER 4

A REVIEW OF DATA INTERPRETATION FOR WAVE PROPAGATION TESTS

The interpretation of data from wave propagation tests has histori-
cally lagged advances in equipment design and improvements in field
testing techniques. This has, in large part, beendue to the limited
ability to provide theoretical analyses of typical structures. This
has resulted in a significant quantity of field data being rendered re-
dundant due to the inability to utilize it at the interpretation stage.
Equipment design has, in turn, been influenced by available interpre-—
tation methods. Methods of interpretation may be divided into four

broad types, although considerable overlapping may occur and elements

of each method type may be used in any given application. The four types

may be categorized as follows:

1. Simple asymptote method.
2. Interpretation supplemented by seismic test data.

3. Methods relying on the detailed comparison of empirical
dispersion curves with theoretical curves for simpli-
fied plate-like structures.

4. Methods dependent upon knowledge of the general charac-
teristics of the spectral lines and dispersion curves

of structures similar to those under test.

Simple Asymptote Method

This is the most basic interpretation method and is applicable to

only the most gimple situations. Fundamentally it is only applicable

to the case where the structure may be reliably approximated to a
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homogeneous elastic half-space. In this case the surface wave 13 a
single mode propagating with a velocity equal to the velocity of propa-
gation of a Rayleigh wave (see Chapter 2). The wave velocity may then

be related to the material properties of the half-space as follows:

c=y:5=/% (4.1)

where

¢ = apparent velocity of the surface wave

y = velocity of propagation of Rayleigh wave
B = velocity of propagation of a shear wave
G = shear modulus

p = mass density .

By making suitable assumptions, or from independent determination of the
mass density of the material, the shear modulus may be obtained from

Eq. (4.1). In additiom, if the Poisson's ratio for the material is known,
or can be reliably estimated, the approximation that the Rayleigh wave
veloeity is equal to the shear wave velocity may be eliminated by reference
The Young's modulus (compression

to the relationship given in Fig. 2.3.

modulus) may also be obtained from the relationship:

E = 2(1 + v)G (4.2)

where:

E = Young's modulus
v = Poisson's ratio

Shear modulus

[p]
I
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This method of interpretation may be extended to cases involving
single surface layers over & half-space, Fig. 4.1 shows a hypothetical
dispersion curve obtained from a structure consisting of a relatively
rigid layer over a softer half-space (81/82 = 4) . The portion of the
dispersion curve obtained from high frequency (short wave length) vibra-
tory tests is asymptotic to the velocity of propagation of Rayleigh
waves in the surface material. This is due to the fact that Rayleigh
waves are a boundary phenomenon (see Chapter 2) and the dynamic ex-
citation, both horizontally and vertically, is substantially confined
to a zone within about 1,5 wave lengths from the surface and, beyond a
depth of about 2.0 wave lengths, the displacements are practically in-
significant., Thus, as the wave length of the propagating wave tends
toward zero, the influence of the material comprising the half-space
has decreasing influence on the velocity of the surface wave. Conversely,
at very long wave lengths the volume of material subjected to significant
excitation is dominantly composed of the material forming the half-space
and the dispersion curve becomes asymptotic to the velocity of propaga-
tion of waves in the half-space material. These interpretations allow
some information to be gained about material lying beneath structures
but, due to limitations in the frequency range capacity of any given
vibratory equipment, rather crude approximations are often required to
determine the asymptote, especially in cases involving high rigidity
surface layers such as concrete pavements.

Vibratory/Seismic Methods

The simple method of interpretation described above actually yields

no fundamental properties without the input of assumptions regarding

the mass density and Poisson's ratio of the material. This problem
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limits the utility of the technique. The mass density of common ma-
terials can be readily approximated or determined independently without
excessive effort. The Poisson's ratio, however, is not easily deter-
mined and reliable estimates are not normally readily available. The
Young's modulus of materials is often of great interest and thus it
would be desirable to achieve some means whereby the Poisson's ratio
could be obtained by direct measurement. The velocity of propagation of
P—waves (compressional wave) in geologic structures may be obtained by
the well established methods of seismic investigation. These methods
have been used (Maxwell and Fry, 1967) in conjunction with vibratory
testing in situations where data was required for strata at great depth,
such as at sites of excavation by nuclear explosives. The velocity of

propagation of a P-wave is

o= 1/—ip"— (4.3)

where A = Lamé's constant,

and the three basic velocities of propagation are related by

Y=f(%] . (4.4)

In studies of pavement structures the added information to be gained

from the supplementation of the vibratory method by seismic surveys has

not been pursued due to the greatly expanded time and expense required

to obtain data for each inspection site. There is also the problem of

interpretation of seismic test data for such detailed structures as

multi-layered pavements and the limited ability to analyze cases in




which accoustic rigidity decreases with depth,as discussed in the
previous chapter.

Plate Theory Methods

The development of methods for the theoretical analysis of layered
structures, in which the material properties allow the use of simplified
models comprising single and double horizontal plates, has been discussed
in Chapter 3. Experimental results obtained on highway pavements having
a single upper layer of relatively high shear modulus of elasticity
have shown that a "free—plate" approximation 1s justified at phase
velocities which are appreciably greater than the velocity of compres—
sional waves in the underlying medium (Jones, 1963. Wave propagation
testing techniques for highways, particularly concrete pavements, were
developed to take adventage of this fact., The interpretation procedure
relies on the short wave length portion of the dispersion curves and thus
is well suited to testing with equipment based on 1ight weight, high
frequency vibratrs.

Consider a single layer of jnfinite horizontal dimensions resting
in welded contact on a half-space as shown in Fig. 4.2. The equations
of motion at any point within this system are as defined in Egs.(2.16).
The boundary conditions are, at the free surface the normal and shear
stresses are zero, at the interface the stresses and displacements are
continuous and at great depth (i.e. 2 7 w) the displacements tend to

zero. Applying these constraints and using Egs. (.16 yields the de—

terminant expression:
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in which the symbols are as previously defined in Chapter 2 and the sub-
script 1 refers to the surface layer and 2 to the half-space. To make
the solution of Eq. %.5)tractable Jones (1962) proposed that it is
reasonably accurate, for many practical cases, Lo neglect the shear
strength of the half-space and deal with a layer resting on a semi-
infinite liquid. Then with G, = 0 (i.e. B, = 0) in Eq.(4.5) the solu-

tion to this reduced problem is

p{2q + 6Cosh (& ikr d) Cosh (5 iks d)
5 ikry 7 1k8, .63
+Q6 Sinh(% tler, d) Sinh(% is,d;) = 0

where

_ 42 1 . ] 1 .
P = bl Cosh(2 1krld) Sinh (2 1ksld)

, 1, 1,
- Arlsl Slnh,QE-lkrld) Cosh Gflksld)

2 oo L 1,
Q= bl Sinh (E 1krld) Cosh (2 1ksld)

1. . 1,
- 4rls1 Cosh QE 1krld) Sinh (2 1ksld)

and

e}
B~

T
s =22
1T

tb‘n
=

Jones (1962) presented a 1imited number of solutions to Eq. (4.6)but,

in the case where the further approximation can be made that the upper
layer is a free plate, Lamb's (1916) solution is applicable. In this
Q=90 in

case for longitudinal waves P =0 and for flexural waves

Eq. (4.6) and the two types of solution reduce to:
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Fig. 4.2 A SINGLE LAYER RESTING ON A HALF-SPACE
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Fig. 4.3 PRINCIPAL BRANCHES OF DISPERSION CURVE
FOR A FREE PLATE
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Tanh Cl ikr_d) 2
2 1 b
Tanh (1 s d = Zrs 4.7
an E—i 1 )
and
Tanh (}— ikr.d)
2 1 4rs
— 1 =3 . (4.8)
an Gi 1ksld) b
The solutions of Eq. (4.6)for short waves (i.e. k +®)} are:
b2 — 4r.s, = 0 (4.9
1 171 -9)
(4.10)

and
bz - 4r.s, + 6 =0

1 171 *
the surface with

esponds to surface waves propagating along
ate to the upper layer and is

Eq. (b.9)corr
appropri
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the Rayleigh wave velocity Y4
late solution at zero wave length.
plate material it

identical to the free p
elocity is a fundamental property of the
The dispersion

leigh wave Vv
may be conveniently used to normalize dispersion curves.
e representing the solutions to Egs. %.7)and (4.8).
phase velocity,

curves for a free plat
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plate thickness)
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An infinite number of solutions to Egs. (4.7)and
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be designated the M1l branch. This branch is of minor importance in
vibratory testing as the majority of the energy generated is in the
form of asymmetric or flexural waves represented by the M21 branch
(Eq. 4.8). Fortunately, the shape of the M,, branch is affected teo
only a minor extent by variations in Poisson's ratio so that an error in
its selection is not of major consequence,

Normalized free-plate dispersion curves are used in the interpre-
tation of wave propagation test data in the following manner. The test
results are reduced to phase velocities and wave lengths for each test
frequency and plotted on fully logarithmic axes as shown in Fig. 4.4.
These points are compared with the theoretical solutions to the disper-—
sion of waves in a free plate drawn on a transparent material, It is
convenient to construct the theoretical curves against the fully logarith-
mic axes 7y/c and L/d so that in this normalized form only one curve
is required for each value of Poisson's ratio. In addition, the axes
used on the transparency are drawn in a position corresponding to 2 shift
of the axes from the origin to some convenient ordinate and abcissus
which allows the curves to be presented in a compact form. Fig. 4.4
represents an example in which the theoretical solution plotted in this
form, for a material of Poisson's ratio = 0.25, has been overlaid onto
experimental results. The full line represents Tamb's (1916) solution
and is referred to the inner set of axes which are drawn at ordinate
and abscissus corresponding to 400 m/s and 10 cm respectively. The axial
shifts between this set of axes and the corresponding axes against which

the experimental results are plotted are:

Horizontal Axial Shift = Log L + Log (d/L) = Log d (4.11)
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and
Vertical Axial Shift = Log ¢ + Log (y/c) = Log ¥ » (4.12)

By suitable annotation of the inner set of axes {associated with the
normalized theoretical curve) the value of ¥ and d may thus be read
directly at the point where the 400 m/s ordinate and the 10 cm abscissus
of the experimental data plot intersects the fnner set of axes. For the
example in Fig. 4.4 these values are Y = 1500 m/s and d = 12 cm
respectively. A set of transparencies designed for this method of in-
terpretation has been published by Laboratoire Central des Ponts et
Chaussées (1971) of France.

Interpretation methods based on the comparison of test data with
theoretical dispersion curves for simplified structures may be extended
to include structures composed of two surface layers over a half-space.
Fig. 4.5 represents a structure of this type. By applying the appro-—
priate boundary conditions and considering the equations of motion, it
is possible to express the propagation equation for plane waves in such
a structure in the form of an 8 x 8 determinant, the elements of which
contain hyperbolic functions of a kind similar to those given in Eq. (4.5
for the single layer case. There are again an infinite number of dis-
creet roots to the equation and gsolutions are not readily obtained
(Jones, 1962}, However, in a number of practical cases highway pavements
consisting of two upper layers of relatively rigid materials overlying

a soft half-space may be adequately approximated by a two-layer composite

plate in free space (Joneg and Thrower, 1965b). The solution to the wave

propagation equation for this simplified model may be obtained either by

methods of the type outlined in Chapter 3orb
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Consider propagation in a uniform free plate. The dispersion

equation is of the form
F(e/B , L/d) =0 . (4.13)

Thus,the wave length of disturbances propagating at a given phase
velocity, in a plate formed by jolning two plates of identical elastic
properties in welded contact, is obtained by addition of the wave lengths
of vibrations of the same velocity in each plate separately. If the
components of the two-layer plate are not identical in thickness and
elastic properties, this additive method is not accurate but Jones and
Thrower (1965b) have shown that, for cases where the elastic properties
are within the range 4:1 < Gl: G, > 1:4 , the error involved in applying
this method in less than + 5%.

A typical dispersion curve obtained for a two-layer free plate is
shown in Fig. 4,6, Branch A is similar in shape at long wave length
to the principal flexural mode CMZl) shown in Fig. 4.3 for a single
plate. At a shorter wave length it passes through a velocity maximum
and ultimately approaches the lower of the two Rayleigh velocities (Yl)
at zero wave length, This suggests an asymptotic approach to a true
Rayleigh wave propagating along the surface of the corresponding material.

Branch B corresponds to the iongitudinal mode in a free plate at

long wave length and at short wave length approaches the lower of the

two shear wave velocities (Bl) .

Branch C approximates the higher of the two Rayleigh wave velocities

(Yz) at near zero wave length and is attributed to a gurface wave at

the free surface of the materlal of higher Rayleigh wave velocity. With

increasing wave length the velocity tends to jnfinity and probably repre—




(k3

sents a wave resulting from the influence of the internal boundary
between the two materials.

Interpretation techniques rely on the characteristics of Branch A
alone and in practice points along Branch B or C are rarely cbtained
from test data. However, even after this simplification, the two-layer
free plate approximation Is much more difficult to apply to the inter-
pretation problem than the corresponding single plate analogy. This is
due to the greatly increased number of parameters involved. By normali-
zation by properties of the surface layer, the two upper layers of the

structure shown in Fig, 4.5 may be defined by the following five ratios:

d2 o o

T
4y

4 % Ff %2
By 7By 7 By Py

It is usual to estimate reasonable values for the mass densities, pl
and p,y and the Poisson's ratios Vv, and  Vy for both of the layers
by independent methods. These estimates fix the values of the ratios
p2/pl and allﬁl and in addition yield an estimate of OtZ/B2 . For

any fixed set of values for the ratios, pzlpl and BZ/Bl it is

possible to plot a family of curves, one curve for each value of the

ratio d2/dl , of the relationship

S - riky (4.14)
By dy

in a manner similar to that for a single free plate as was shown in

Fig. 4.4, A typical set of these curves is shown in Fig. 4.7 where the

axes are again set to correspond with a L = 10 cm , ¢ = 400 m/s base

on the c¢/L plot obtained from the field data. Laboratoire Regional

D'Autun (1971) of France has published a set of transparencies
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engraved with families of curves of the type shown in Fig. 4,7, suitable
for use in the interpretation of vibratory test data from a range of
typical highway structures. However, the possible combinations of
parameters yields hundreds of individual curves for the dispersion
function and as their shapes do not differ radically it is not possible
to select the appropriate curve in practice without foreknowledge, or
at least a reliable estimate, of some basic properties of the structure.
The geometry of an existing highway structure is usually reliably known
so that the ratio d2/d1 may be available but, due to the form of the
dispersion curves, an estimate of the appropriate value of 82/8l is
often required. A knowledge of this latter ratio confines the search
for the correct curve to the members of a single family which when pre-
sented in the form shown in Fig. 4.7 are drawn all together on one sheet,

The peculiar shape of the dispersion curve for the flexural mode
of vibration in a composite plate (Branch A in Fig. 4.6) is of assistance
in the search for estimates of the ratio 82/81 . It is possible to
construct curves reating the coordinates of the maximum on this curve to
the value of the ratio 62/81 . The ordinate, i.e. c/Bl , is a function
of 82/81 of the type shown in Fig. 4.8A while the abscissa, L/dl,is as
shown in Fig. 4.8B. Two examples will illustrate the use of these func-—
tions in interpretation of wave propagation test data.

Fig. 4.9 gives the hypothetical results ocbtained from a test of a
highway structure known to consist of two relatively stiff layers over

a soft substratum. It is known that d2/dl =5 . Atvery short wave

length the dispersion curve ig asymptotic to ¢ = 1370 m/e which, from

knowledge of the characteristic shape of dispersion curves in a two—layer

composite free plate, can be assumed to approximate the Rayleigh wave

68




69

. .O_
J1ivld 3344 JLISOdWOD V NI NOISH3dSIQ 40 3Q0W IVHNX3T1d 3HL O S31143d0ud 8t ©!d
, 8
'sy/ % % A
oz &/ g/ v/ gl 0l oz & g9/ 4 gl 0O/

"XOW ( ’9’/9}

v/

9/

- tu
vt !




70

JAHND NOISH3ASIO 03NI430 A1HO0d Ot by

wa ‘7
oo/ aol o/
T T [T T 1 UARAREL
- -—002
B —00%
_ i 5
N i 3
I ] &>
— —~ 000/
’
I
\\\
L \n.\.ll .
gl TERE NI | v pooz

"

JAHND NOISH3dSIA QINLE3A T13M 67 By

oo/

Pl i

wI ‘7
oo/ o/
1:~__ 1 i *—_d-__
007
—H00%
5
] 3
- >
ooo
/W OLEN = U~
TSRO ST O B 0002




veloclty, v, , in the surface layer. If a Poisson's ratio of 0.25 is
assumed for this material,this yields the information Bl = 1,490 m/s.
The maximum point on the dispersion curve (Fig. 4.9) 1is observed to

occur at ¢ = 1,780 m/s so that

_ 1,780

= 50 - 19 - (4.15)

(c/8y)
ma.

X
Entering Fig. 4.8A with this value and noting the intersection of this
ordinate with the curve for d2/dl = 5 vyields 82/8l = 1,40, Thus,a
reliable estimate of the theoretical dispersion curve which best cor-
responds to the test data has been obtained and it is now possible to
proceed with a more detailed analysis using constructions of the type
illustrated in Fig. 4.7.

In other cases test data may be reduced to a dispersion curve of
the type shown in Fig. 4.10., Due to the properties of the materials,
the limitations of the instrumentation or & combination of both of these
factors it is often impossible to obtain points on the dispersion curve
in the high frequency, 1l.e., short wave length, range. As shown in
Fig. 4.10 it is then not possible to make a reliable estimate of the
value of Y1 for the surface material, Nevertheless, the abscissa of
the maximum point on the curve may be determined to be 28 cm in this
case. Assuming d; = 5cm and d, = 25 cm (di.e. d2/d1 = 5) have
been obtained independently,it is now possible to compute (L/dl)max =
28/5 = 5.6. Entering Fig. 4,88 at (L/dl)max = 5,6, then for d2/dl = 5,
82/81 = 1.40 and, as for the previous example, it is now possible to

proceed with the analysis by comparing the test data with the appropriate

theoretical result.

Extension of methods involving detailed comparison of dispersion
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curves with those of approximately similar plate structures has not
been made beyond the two-layer composite plate analogy. This is
due, in part, to the difficulty of obtaining numerate theoretical solu-—
tions but also to the fact that the number of variables become un-
manageable. Even for the simpler cases discussed above, reliable re-—
sults can only be expected for structures which sufficiently approxi-
mate the assumptions made in developing the theoretical dispersion
curves, Such pavements are typically those composed of bituminous
surfacing laid on good quality lean concrete bases or concrete slabs
on lean concrete bases (Jones and Thrower, 1965b).

In practice it is important to ensure that the structure subject
to test complies with the limitations of the interpretative technicue
or erroneous evaluations may occur. Significant heterogeneities and dis-
continuities often occur in practical structures and a body of experi-
ence with the testing method is required if reliable interpretations
are to be obtained., Guillemin (1970) and Guillemin and Gramsammer (1971)
have discussed a number of these problems and methods for the statis-
tical analysis of results from typical highways.

Methods Using the General Characteristics of Dispersion Curves

The development of heavy vibratory testing equipment, notably in
the United States, has allowed dispersion curves to be obtained from

the low frequency range for relatively deep and complex structures.

However, for functional reasons, such equipment is not well suited to

the production of detailed dispersion curves in the highest frequency

range. Some of the practical implications of this will be discussed at

greater length in the next chapter, but at present it should be noted

that the interpretation methods discussed above rely heavily on a study
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of dispersion curves within the high frequency range. Interpretation
of dispersion curves cbtained from multi-layered structures by tests
using the heavy vibrators depends more on an understanding of the
general characteristics of the dispersion curves rather than a detailed
comparison of the test results with theoretical curves. In this case
a knowledge of the properties of the branches representing the higher
modes of propagation is important. Chapter 3 includes a discussion of
the methods by which analyses of layered structures may be made, but
also points out their limitations and the difficulties involved in ob-
taining numerical data for all but the simplest systems. Some of the
basic findings have been reviewed previously and their use in inter-
pretation will be outlined below.

Consider first the case of a single surface layer resting on a
half-space of lesser rigidity. Vidale (1964) has presented theoretical
dispersion curves for a varlety of cases with differing stiffness con-
trasts between the surface layer and the half-space. Two typical cases
are shown in Fig. 4.11. These models include the influence of the shear
strength of the material in the half-space but their principal charac-
teristics are similar to those found by Jones (1962) where the shear
strength of the half-space was ignored,

In both Case 1 and Case 2 of Fig. 4.11 there is a branch of the
dispersion curve gimilar to that found for the flexural mode (MZl) in a
free plate, The velocity of waves of this mode approach that of Ray-
leigh waves in the surface layer (yl) in the high frequency, short
wave length range. As the wave length increases the curves fall below

the free plate solution. The dispersion curves shown in Fig. 4.1l are

the projections onto the real plane of the secular lines in complex
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space. Along Branch A the complex component increases with increasing
wave length. Vidale (1964) does not demonstrate that this branch termi-
nates at any definitive upper value of wave length but postulates that
the increasing attenuation would make it unlikely that such waves would
be measured in practice. This is gsupported by evidence from the field
(Jones, 1962).

Branch B in Case 1 also has a cut—off point as defined by Vidale
(1964) but in this case it is at a short wave length limit. Again
there is no absolute criterion for the location of this point other
than the increasing magnitude of the complex component and the fact
that in the field it is observed that the instrumentation detects a
sudden large variation in the wave length of the propagating surface
motion at frequencies in the vicinity of these points. This short wave
length cut-off of Branch B occurs at a phase velocity which is at, or
close to, the velocity of compressional waves in the half-space 0&2) .
This observation has been used to determine the velocity of compressional
waves (az) in the half-space beneath a single surface layer.

In Case 2 of Fig. 4.11 the mismatch between the stiffness of the
surface layer and the half-space is considerably less than in Case 1.
Branch A is present but is much more poorly defined than in Case 1. At
the short wave length limit Vidale (1964) indicates a cut—off but this
occurs at a phase velocity close to the Rayleigh wave velocity for the
upper layer (ul) and thus may be used in interpretation. Branch B
in this case does not exhibit a short wave length cut—off, but is con-
tinuous to the L/d1 = 0 axis. The short wave length portion is not
normally observed in the field as the mode of propagation assoctated

with Branch A begins to dominate in this region. It should be noted




™

"

76

that in the short wave length limit Branch B is not asymptotic to the
velocity of compressional waves in the half-space (az) , but only
approximates this value. In interpretation of field data, however,
the phase velocity corresponding to the coordinate of this branch at
the shortest observed wave length is usually taken as equal to the
velocity 0, - Error resulting from these kinds of approximations
would appear to be of uncertain magnitude, depending upon the type of
structure under investigation.

In all of the cases studied by Vidale (1964) Branch B is asymptotic
?t long wave lengths to the velocity of Rayleigh waves in the half-space
(Yz) . This observation has been used in interpretation on the assump-
tion that the longest wave length coordinate on this branch has an ordi-
nate approximately either 82 or Yo -

Vidale's (1964) studies provide some useful insights into the
general characteristics of dispersion curves but the material properties
which were used are in many cases disimilar to those encountered in the
majority of engineering structures. For example, in both Case 1 and
Case 2 discussed above,Poisson's ratio for the surface layer is 1/6,
which is lower than normally encountered. A thick-1ift asphalt pavement
on a clay subgrade is a more practical example of a structuré composed
of a single layer over a half-space. Fig. 4.12 shows the dispersion
curves obtained for a pavement structure of this type by an analysis
using computer program HASK which is described in Appendix 3. Branch AB
corresponds to the propagation of a longitudinal wave in the surface
layer Gﬂll) and is not of great practical significance 2as it is only

rarely that this type of wave 1is observed in the field. Branch AC is

gimilar to those found by Jones (1962) and vidale (1964) and approximates
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the flexural wave in a free plate of similar properties to the asphalt
surface layer. It is asymptotic to the velocity of Rayleigh waves at
the surface of the asphalt (Yl) in the short wave length limit. As
the wave length increases the wave attenuates to a greater and greater
degree in a manner similar to that noted by Vidale (1964). However, no
arbitrary decision was made to terminate this branch at some predeter-
mined value of the complex component and it was found that a continuous
secular line could be constructed through to the long wave length region.
At point C the complex component of the attenuating wave reaches a
maximum at a wave length of about 1.2 meters (wave numbers k =

5.20+ i 0,81) and then decreases to zero at point D . A separate
branch of a type similar to Branch B in Fig. 4,11 could not be found in
this case. 1In the field it may well be that waves corresponding to
points in the vicinity of € would not be detected and the portions of
the curve closest to points A and D might be assumed to constitute
separate branches. These would have an appearance not unlike Branches A
and B in Case 1 of Fig, 4.11 and it might erroneously be concluded that
an apparent cut-off point somewhere to the right of point ¢ in Fig.
4.12 coincided with the velocity of compressional waves in the half-
space (az) .

Branches FD and DE in Fig. 4.12 are both in the real plane. That
is, they both have zero complex components. A singularity cccurs at
point D. Branch CD, which is a secular line in complex space, inter-
sects the real plane, represented by the plane of the paper in Fig. 4,12,
at right angles to this point. A minimum on the branch DE also occurs
at D. These characteristics are similar to those found in the vicinity

of singularities in the secular lines for a single layer over a rigid
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base discussed in Chapter 2 and Appendix 1. Note, also, that point D
is below Yy s the velocity of a Rayleigh wave propagating in the half-
space but that along Branch DE the phase velocity increases slightly
towards EQ . This tendency of increasing velocity at very long wave
lengths has been observed in the field and has been ascribed to in-
creasing stiffness of the sub-~strata with depth (Richart, Hall and
Lysmer, 1962). As no such increases of stiffness was present in the
model studied here, it may be that the field observations are due to a
combination of this effect and the basic characters of the dispersion
curves in this region. Using the plate approximations, Jomes (1962)

was unable to obtain points on the dispersion curve in the vicinity of
point D in Fig. 4.12, but he was of the opinion that some form of transi-
tion zone was to be expected. Vidale (1964) experienced numerical dif-
ficulties in obtaining points in this region for some of the structures
which he examined but, despite the fact that in a number of cases he
found that the complex component of the wave propagation reduced to zero

in the long wave limit, he surmised that the dispersion curves were

smoothly continuous; through from the zone CE to DE in Fig. 4,12, Neither

author reports point associated with a branch similar to FD.

The wave length at which points on dispersion curves constructed
from field data transfer from one branch to another, such as from
Branch A to Branch B in Case 1 of Fig. 4.11, has been used as an aid to
interpretation., Heukelom and Foster (1960) report case histories, from
a site where vibratory testing was accompanied by exploratory drilling,
in which this wave length coincided with a value equal to about twice
the depth of the superficial layer. The case reported involved a site

at which the underlying material was stiffer than the surface layer.
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This observation led to an interpretation method commonly known as the
"half wave length theory." It is assumed that tledepth of the surface
layer is equal to one-half of the wave length at which the dispersion
curve is discontinuous in passing from one branch to another, This
idea has been extended to more complex multi-layered situations and in
the United States has been widely employed in the interpretation of
data from vibratory tests on pavement as well as geologic structures,
(See for example Ballard, 1964). An inspection of Figs. 4.11 and 4.12
will show that there is no reliable relationship between the disconti-
auities between branches of the dispersion curves and the thickness of
the surface layer. Vidale (1964) reached the same conclusion and thus,
while approximate layer thicknesses may be obtained by this method in
certain individidual cases, it cannot be recommended as an interpreta-
tion technique, unless supported by independent evidence at a particular
site.

In those cases in which there are more than one layer overlying the
half-space the numerical difficulties involved in obtaining theoretical
dispersion curves are greatly increased. However, some general charac-—
teristics of these systems can be recognized. Fig. 4,13 shows disper-
sion curves obtained by vidale (1964) for a structure composed of two
layers over a half-space. There are three branches., Branch A is
similar to those seen for simpler structures (See Figs. 4.11 and 4,12)
and represents a high frequency wave propagating along the surface.

At the short wave length 1imit it approaches the velocity of Rayleigh
waves in the upper layer (Yl) . Branch B falls within a velocity
range similar to that of Branch B for Case 1 of Fig. 4.11. The short

wave length limit approximates O, while the long wave 1imit approaches
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By o Branches of this type are observed in the field (Rao, 1973) and
the coordinates of the limiting points are used in interpretation on

the assumption that the phase velocities with which they correspond

are reasonable approximations to the velocity of propagation of shear
and compressional waves in the second layer., Forx systems with more than
two surface layers a corresponding branch is usuvally found for each
layer,

Another feature commonly observed in field data from multi-layered
sites is a branch similar to that designated € in Fig. 4.13. It covers
a very wide frequency range, often being present throughout the spectrum
of wave lengths. As shown in Fig., 4.13, at short wave lengths it ap-
proaches the velocity of compressional waves in the half-space (u3)
and at long wave lengths becomes asymptotic to the velocity of shear
waves (BS) in this materials.

By comparing field data with theoretical dispersion curves of the
type discussed above it is possible to obtain some of the characteristic
properties of a structure under investigation. Note, however, that while
discontinuities in dispersion curves similar to those separating the
various branches are observed in field data, there is no absolute evi-
dence to show how closely these points approximate the values which they
are assigned in interpretation, For the more complex structures it 1is
often difficult to assign points obtained from the field to any par-—
ticular branch. Branch B in Fig, 4.13, for example, is very irregular
and if the computed points shown were presented as field data, it might
not be unreasonable to regard them as assoclated with two or more sepa-
rate branches. Problems of this type are resolved in practice by the
application of experience on the part of the interpreter and by selecting

. "
results according to their "reasonableness.
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To illustrate a typical interpretation problem, results obtained
by Rao (1973) from the pavement at Nellis Air Force Base, Nevada, will
be used., Fig. 4.14 shows the dispersion curve and the results of the
interpretation, The cross-section of the site represents what was known
prior to the vibratory testing. After plotting the points obtained
from the test, the first step is to draw curves through them to form
the branches A, B, C and D, The discontinuities between the branches
occur where there is a divergence from a continuous smooth curve. It
is clear, however, from an inspection of Fig. 4,14 that, based on the
plotted data points alone, the curves could be considered discontinuous
at a number of places other than those selected here. This problem
presents one of the major difficulties posed to the interpreter. With
the aid of sophisticated testing equipment, Rao (1973) has observed
that at certalin frequencies there is a sudden digcontinuity in the
smooth relationship between the frequency and the phase of the measured
surface response relative to the vibratory source. He interprets this
as occurring when there is a change from one mode of propagation to
another in the dominant surface motion. It is at points on the disper-
sion curve corresponding to those occurrences that the discontinuities
are shown. A fuller discussion of this technique will be found in the
next chapter. Where this kind of supplementary data is not available
the uncertainties of the interpretation are greatly increased.

Branch A which lies in the short wave length range is considered
to approximate the dispersion curve for a flexural wave propagating
in a free plate of similar characteristics to the surface layer. Thus,
the velocity of Rayleigh waves In this material is assigned a value

equal to that corresponding to the short wave length cut-off of this
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branch, i.e., Y, = 2860 ft/sec. Branches B and C are unexpected, as
the known cross—section does not predict layering in the gravel base,
However, the discontinuities appear distinctive and, relying on the fact
that the long wave length cut-off of branches associated with inter-
mediate layers approximates the shear wave velocity in the layer, the
interpretation 82 = 1400 ft/sec and 83 = 900 ft/sec is made. The
usual interpretation is applied to Branch D, i,e., that at very long
wave lengths it is asymptotic to the velocity of shear waves in the
deepest layer involved in the vibratdry excitating. In this case it

is assumed that B4 = 883 ft/sec.

At this stage the shear wave velocities of materials in four dis-
tinct layers have been estimated, The depth and thickness of layers
beneath the asphalt surfacing are not known, however. To convert these
results into Young's moduli it is necessary to know both the Poiason's
ratio and the mass density of each of the layers. As is usual, these
have been estimated based on the material types known to be present in
the pavement structure. The resulting estimates of the moduli are tabu-
lated in Fig. 4.14.

The interpretation method illustrated by this example is typical
both of the approach used and the type of results obtained. This dis-—
persion curve was obtained with a relatively heavy vibrator and it is
possible that had lighter equipment been available a more detailed pic-
ture could have been obtained in the high frequency range. Some of the

interpretation methods outlined in the previous section of this chapter

may then have been applied to Branch A, so that the Poisson's ratio of

the surface material might also have been deduced and the need to intro-

duce an estimate of its value eliminated.
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Physical Models

Difficulties with analytic methods used to predict the propagation
of wave fronts have encouraged the construction of physical models to
simulate natural and man-made structures. Applications in the field of
geophysics have been reported by Toksoz and Anderson (1963) and dis-
cussed theoretically by Oliver, Press, and Ewing (1954). Models in the
form of two-dimensional sheets composed of materials intended to reflect
properties similar to those found in highway structures have been con-
structed by Thomas (1969) and Jones (1968) reports similar studies per-—
formed by Tosticorelli. These models have been constructed from aluminum
and plexiglass representing a pavement structure and with linoleum simu-
lating a half-space composed of natural soil. These materials have been
chosen because they provide model structures in which the stiffness con-
trast between the different layers is similar to that found in pavements.
Linoleum also has a low shear modulus, the shear wave velocity does not
change appreciably with frequency and damping of vibrations occurs, which
are all characteristics found for many soils.

Results from model testing have been successful in confirming the
validity of the theoretical analyses for simple structures and have
shown that those modes of propagation which are predicted to dominate
the excitation are in fact observed at the free surface. Gramsammer
(1969) has reported excellent agreement between dispersion curves ob-
tained from a model composed of a single layer over a half-space and
those derived analytically. However, model studies do not appear to

have produced results of direct assistance to the problem of interpreta-—

tion of wave propagation test data.
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Application of Results

The interpretative process applied to the dispersion curves ob-
tained from a vibratory testing program yields information about the
geometry of a structure and/or the material properties of the component
layers in the form of pseudo-elastic moduli; i.e., Young's Modulus, E
and Shear Modulus, G . These moduli are usually sought for use in the
analysis of existing or projected structures by methods based on some
form of elastic or viscoelastic techniques. The loadings used in such
analyses are, of course, similar to those encountered in daily use.
While the vibratory methods of testing obtain data from the materials
in-situ and thus eliminate the need to evaluate the influence of many
environmental factors such as confining pressure and water content, the
loading imposed by the test vibrator is dissimilar to the in-service
loading and is normally much smaller in magnitude. This factor is of
major importance, as the moduli of soils and pavement construction ma-
terials are sensitive to strain amplitude. Increasing shear strain
amplitude is associated with decreasing shear modulus. Moduli obtained
from wave propagation tests are typically much higher than those suitable
for use in analyses where traffic loading is involved. The influence of
confining pressure 1is also of considerable importanceé when deep layers
are considered, as has been demonstrated by Cunny, Cooper and Fry (1969)
in a comparative study of dynamic in-situ and laboratory tests.

Bituminous macadam materials are sensitive to temperature fluctua=
tions, so that it is important to record the climatic conditions pre-—
vailing at the time of testing., The frequency of excitation may also

be a significant factor influencing the measured properties of these

materials.
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A discussion of the properties of typical materials involved in
highway construction and methods by which wave propagation test results

may be modified for use in analysis of in-service structures is pre-

sented in Appendix 6.
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CHAPTER 5

SOME PRACTICAL ASPECTS OF VIBRATORY TESTING

As the wave propagation method is substantially in the development
stage, there exist a variety of instrumentation, equipment and test
procedures which have been developed by the various research groups
working in the field. The major influence on test configuration is
the purpose for which the data cbtained from the test is required but
also, to a significant extent, the theoretical basis of the method
used to interpret the test data and the history of its development
affect the design. The principal applications in which the wave propa-
gation method has been used to date are:

Principal Applications of the Wave Propagation Method

1. To obtain in-situ properties of soils and pavement

materials. Surface layer only.
2. 1In quality control of pavement construction.

3, Detection of deteriorating zones in existing pave-

ments.

4. Studies of the influence of changing traffic

patterns on pavement stiffness.
5. Seasonal and long term variations in pavement
properties,

6. As an exploratory tool to obtain details of the cross-
section of existing pavements prior to the design of

overlays.
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7. In the investigation of sites for the foundations of
heavy structures subject to vibration. Principally

radar towers subject to oscillatory wind loading.

8. Investigation of rock properties to depths up to
200 ft (60 m). Principally at nuclear cratering

sites.

Light and Heavy Vibrators

There are two major divisions into which the equipment types
may be divided. These will be designated as the "heavy type' and the
"l1ight type." This designation is based upon the size and power of the
vibratory source used to excite the structure to be tested., The heavy
vibrators have their origin in machines primarily designed to measure

the overall stiffness of pavements as discussed in Chapter 1. They

are large mechanisms capable of delivering forces of up to approximately

23,000 N (5,000 1bf) at maximum amplitude (Rao, 1973). The mass may
attain 3,000 kg, resting on loading plates up to 0.5 m (20 in.) in di-
ameter (Mucci, 1968). Extensive auxiliary equipment, gsuch as hydraulic
cooling, is also required and transportation usually involves specially
designed vehicles. The light vibrators typically have a mass of less
than 50 kg, are supported by compact auxiliary equipment and are easily
transported by light vehicles. In their basic form they are simple
electro-magnetic oscillators mounted on loading plates of no more than
10 cm (4 in.) diameter.

Some of the equipment based on the light vibrators has been de-
signed for specific applications where its gimplicity and mobility
are essential, Ideally, however, wave propagation equipment used for

general purposes should be capable of operating through a frequency
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range from 5 to 50,000 cps (Nair,1971) while generating sufficient

siderable effort has been expended to improve the operating range of
equipment while maintaining its simplicity but, to date, a single
system capable of operating through the full range has not been
perfected.

Light Equipment

Systems designed around light vibrators such as those developed
by the Transport and Road Research Laboratory, (TRRL) England (Jones,
Thrower and Gatfield, 1967) have frequency ranges of order 30 to 30,000
cps but due to their light weight and small power are not capable of
exciting layers at depth beneath pavements. Recent advances in the
design of the pick—-ups which measure the characteristics of the surface
wave have allowed this wide frequency range capability to be utilized
with compact auxiliary equipment, rapid test procedures and high
system mobility, FEarly test procedures involved moving the pick-up
outward from the vibratory source until the signal from the pick-up
recorded on an oscilloscope indicated that the position was coincident
with a peak (or trough) of the surface wave. (Maxwell and Fry, 1967).
This method is cumbersome and detracts from one of the major advantages
of the wave propagation technique which is its speed. The method out—
lined in Chapter 1 in which the phase difference between the source
and the pick-up is measured for arbitrary pick~up position improves the
pace congiderably., The need for simple and rapid on-site procedures
also dictates that the full frequency range required for a test can be
covered with a minimum of disruption to the continuity of the test,

In the range 25 to 30,000 c¢ps the light vibrator system developed at
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TRRL achieves this aim by careful design of the total equipment package
s0 that a maximum number of the components are interchangeable with
minimum operator effort.

The TRRL wave propagion equipment is mounted in a four-wheel
drive light truck (a long wheel base Land Rover). The vehicle has a
power take off (PTO) facility as standard and with minor modification a
5 kw electric generator driven by the PTO is mounted under the pas-
senger seat. All electronics are permanently mounted in the cargo
compartment and so arranged that a seated operator may comfortably
operate all controls. Electric power cables and electronic leads
passing to the instruments on the pavement pass through weatherproof
ports and are stored on reels in the specially designed compartments,
The small number of items required on the ground during the test is
stored in purpose built, floor level racks along each side of the
truck floor. This careful design of the test equipment is of vital
importance in the field. For example, during a test program conducted
by TRRL at Grangemouth, Scotland, in 1972, the method was used to
obtain in-situ moduli of the various structural layers of an experi—
mental pavement. Tests were conducted on each of the layers as con—
struction progressed and, due to the needs of numerous other special
testing programs, as well as the usual construction activity, it was
essential that site occupancy was minimal, TRRL personnel were able
to achieve equipment set—up times of 2 or 3 minutes from arrival at
the site. The capability of Land Rover type vehicles to convey per—
sonnel in comfort on long journeys to site but alsc to negotiate ter-
rain normally accessible only to tracked wvehicles is also of great

importance in many practical applications. Similar short site occu—

pancy times are also of advantage when testing airport pavements
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where dislocation of operations can be very costly.

TRRL's equipment as presently designed employs two types of
vibrator and three pidk-up designs to cover the frequency range 25 to
30,000 cps. The systems are matched to the various operating ranges

as follows:

TABLE 5.1 - VIBRATORS AND PICK~UPS IN USE BY TRRL

Frequency Range
cps Vibrator Pick-~up

25- 300 Electro-magnetic Geophone
moving coil

300- 5,000 Electro—magnetic Salt crystal
moving coil bi-morph
5,000-30,000 Ferro—electric Ceramic detector
ceramic cylinder matched to
vibrator

The frequency range required for any given test will depend upon
the purpose and the nature of the material involved. Generally speak-
ing, the deeper the penetration required the lower the frequency range.
The various systems employed by TRRL have been designed to facilitate
minimum disruption of test continuity when a change from one set to
another is required, Vibrators are cemented to the site with quick
drying dental cement and testing is usually commenced in the high fre-
quency range to avoid high amplitude oscillations while the cement
igs setting. The piclk-up is moved away from the vibrator in equal steps
in distance by an operator guided by a signal lamp controlled by a
senior technician who is in charge of the electronic equipment mounted

inside the vehicle. Loudspeakers are alsm provided and these are used

where special instructions, such as equipment change, are called for.
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It has been found that signal lamps produce less operator fatigue than
audb systems, particularly at crowded and noisy sites. With these
procedures and with experienced personnel it is possible to obtain the
basic data from a test site for a wide range of frequencies and for a
considerable areal extent around a vibrator position within the order
of one hour for a typical highway pavement application.

Improvements in equipment simplicity and compactness and in speed
of operation are, however, the subject of on-going research. TRRL
developed the use of the salt crystal bi-morph pick-up principally to
simplify operating procedure and to improve accuracy. Geophone type
pickups are capable of use beyond the 300 cps limit defined in
Table 5.1 but are restricted by their physical dimensions. Typical
geophones have a diameter of about 10 cm which is of the same order
of magnitude as the wave length of the surface motion in some situations.
This makes for errors in the accurate measurement of wave lengths and
the physically smaller bi-morph is introduced to avoid this problem.
For the very high frequencies required in some applications moving
coil vibrators are inadequate, The ferro-electric ceramic cylinder
vibrators are then used with matched ceramic detectors. This system,
however, has two major disadvantages, In order to transmit sufficient
energy into the structure under investigation the system must be
operated at selected frequencies at which "resonance" occurs. TRRL's
system, for example, operates only at frequencies of approximately 5,
10, 15 and 25 kilocycles per second., This limits the detail which can
be obtained for dispersion curves in the high frequency range. Secondly,
the control electronics required for this system is not compatible with

that required for the moving coil vibrators. The need to provide two
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sets of electronics adds considerably to equipment cost and complexity.

Improvements in the design of light equipment have been pursued
by workers at Laboratoires Routiers in France. The French designs
are based on the original concepts developed by TRRL but, instead.of
relying upon commercially available moving-coil vibrators, new special
purpose equipment has been constructed. Excellent results have been
obtained with moving-coll vibrators capable of operation in the ranges
5,000 to 10,000 cps and 10,000 — 20,000 cps. (Dosso and Keryell, 1968).
Magneto-strictive devices have also been used for high frequency opera-
tion. These systems have the advantage of infinitely variable frequency
within the operating range and have auxiliary and control equipment
compatible with that used for low frequency testing.

In applications where the speed and mobility of the wave propa-
gation method is the major advantage more specialized equipment has been
developed. These applications are typically those in which absolute
values of material properties are not required but, rather, only
comparison between one site and another or conditions at one time or
another are required. Examples are to be found in construction quality
control, diagnostic surveys for potential pavement deterioration and
studies of environmental and loading effects on highway structures.

Ducloux, Poilane and Guillemin (1968) have described a number of
applications of the wave propagation method in the testing of highway
pavements including the correlation of test data with the quality and
degree of deterioration of bituminous macadam. Their work, however,
involved full scale testing. Jones (1964) has discussed a number of
applications in which the tests procedure is simplified and tailored

to the specific problem at hand. For example, the quality comtrol of
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APPENDIX 5

COMPUTER PROGRAM SPRDSP
A program for the computation of dispersion curves for multi-
layered media by the Direct Stiffness method, The theoretical methods

are described in Appendices 4, 7 and 8.
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(1970) has reported on an experimental prototype system mounted on

a light vehicle (Chevrolet station wagon}), A moving-coil vibrator

and an array of three pick-ups are mounted on a hinged cantilever

which is capable of being lifted and lowered to an&/from the operating
position by remote control. With the vibrators and pick-ups positioned
on the surface, tests are conducted automatically at ten pre-~selected
frequencies by means of suitable electronic control devices. Five

sets of measurement of phase difference are made at each frequency

and the mean values selected. This data is recorded on punched tape
and may be reduced to the form of dispersion curves by a computer pro-
gram incorporating a plotting routine., In this way tests can be run

at 60 or more sites per working day. The rather limited flexibility

of the vibrator/pick-up system when confined to the semi-permanent po-
sitions dictated by the cantilever support structure is, however, a
serious drawback. As shown above, the range of frequencies and wave
lengths which are found in many practical applications of the wave
propagation method require the ability to convert from one set of
instrumentation to another and to cover a wide variety of surface wave
lengths. 1In typical highway applications wave lengths may vary from

a few centimeters to ten or more meters at any given test site, The
automated nature of this test procedure while greatly improving speed
does not allow the experienced operator the "hands on" approach often
required to deal with peculiar site conditions and the not infrequent
anomolous results found in practical situations. These problems limited
the first experimental equipment built by Statens Vaginstitut to appli-
cations on base courses of heavy pavement construction but further de-

velopment is expected to improve the range considerably. The desire to
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capitalize on the high speed potential of the method while maintaining
the maximum system flexibility is one of the major challenges in equip-
ment design for the wave propagation technique.

Heavy Equipment

The systems based on the heavy vibrators have been largely developed
in the United States with a strong accent on application to the testing
of airfield pavements, Influenced by the early work at the Royal Dutch
Shell Laboratories in Holland (see Chapter 1),a vibrator consisting of
counter rotating eccentric weights of fixed mass driven by hydraulic
power was constructed in 1962 at the U. S, Army Engineer Waterways
Experiment Station (WES), Vicksburg, Mississippi (Fry, 1963). With
this equipment soil moduli for material at depths of approximately
10m (30 ft) were determined. The need to achieve penetration to
greater depths for site investigation for nuclear cratering experiments
and heavy structures led to the development of a large variable-mass
vibrator capable of generating a maximum force of 116.2 kn(2,128 1bf) at
a frequency of 40 cps (Ballard, 1964). With this vibrator, moduli of
varous materials including basalt and other rocks were obtained at
depthSup to the order of 50 m (150 ft).

The need to upgrade airfield pavements to meet the demand of
increasing aircraft wheel loads led to the application of the wave
propagation method as an aid to the evaluation of pavement geometry
and material properties needed for the design of structural overlays.
Studies of the varlation of pavement properties with time and environ-—
ment were also made. See, for example, Maxwell and Joseph (1967).

In many cases airfield pavements were subjected to a number of other

nondestructive tests in addition to the wawe propagation test, such
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as the plate bearing and Benkleman beam tests (Finn, 1962). The overall
complexity of this type of testing program and the near ideal site con-
ditions afforded by airfields encouraged the development of large and
highly sophisticated mobile testing laboratories. A major effort in
this direction has been made at the Eric H. Wang Civil Engineering
Research Facility at the University of New Mexico, Albuquerque (CERF).

The CERF equipment is mounted in a trailer 8 ft (2.44 m ) wide by
35 ft (10.67m) long, which is divided into three compartments. The
first compartment houses a 100 kw generator capable of supplying 220
volts, 3-phase power. The central compartment houses a field power
supply unit, a transformer (220 v to 440 v step~up), the vibrator and
a cooling unit., The rear compartment houses the instrumentation and
provides operator space. (Rao 1973). Load-deflection tests at selected
frequencies, reasonant frequency tests and deflection-basin tests as
well as wave propagation test can be made with the equipment available
in the mobile laboratory. The vibrator weights 6,750 1bf and consists
of armature coils and field coils. The armature is connected through
three load cells to a 2 in, thick, 12 in. diameter plate. The vi-
brator is lowered into position on the pavement through a hatch in
the floor of the van.

Fig. 5.1 is a schematic diagram of the equipment arrangement as
set-up for the wave-propagation test. Up to six pick-ups are cemented
to the pavement in positions matched to the expected range of the wave
length. The testing is carried out automatically with a continuous
sweep over the desired frequency range. The CERF equipment has a
fourteen channel control and data recording system which allows the

phase-difference between the vibrator and each of the six pickups,




i00

(§£26] ‘00 19140) 443D 1V AIJOTIAIC ININWING3 NOIIVOVdOHd IAVM J0 DJILWVNIHIS I'g i3

= JL ;L
dn-yaio 4040491/
Ja14yduny
4 19MOo
1
10§0(198 0
k dasms
]
boouy ey,
130410234 § \hua - 19 ndwo) = VT 12U0d Y 5.4 ]
Aoy 010510 Vo | agspyy | burysous 1044107 05 Louanbal
a50Yd \ HoS Sojoury
| | i}
yo0g Ao/d
J0{018U39 ssgyydurty
1814402 40
Olb sfpuuoy) £/
yoaqg 9doy
el —
el ——

7] L




+

Iy

R

the operating frequency and other information to be recorded on mag-
netic tape. Dispersion curves can be constructed from the data re-=
corded on tape with the aid of suitable programs and computer driven
plotters. In addition to the basic data which is stored on tape for
later analysis, an x - y plotter is provided which continuously
traces the relationship between the phase—difference at a selected
pickup and the operating frequency. This plot is used by experienced
operators as an empirical check on the progress of the test. Fig. 5.2
is a simplified version of one of the plots obtained by Rao (1973)

at Nellis Air Force Base, Las Vegas, Nevada. F¥or clarity, certain cali-
bration data has been excluded. The basic form of the plot has charac-
teristics reminiscent of a sine wave but in certain frequency ranges
such as at A and B this system breaks down and an irregular pattern
develops. CERF operators have observed empirically that these fre-
quencies coincide with situations at which points on the wave length/
wave velocity dispersion plot disassociate thenselves from a group
lying on one branch of the curve and join another group on & second
branch. For example, from branch A to branch B in Fig.1l.6. This
phenomenon 18 probably associated with the complex surface wave which

occurs at those points in the frequency range where two or more propa~

101

gating wave modes have significant amplitudes and no single mode dominates.

Experienced operators also use these plots as a diagnostic guide to

equipment behavior.

Relative Advantages of Heavy and Light Vibrations

The major application of both the heavy vibrators and the light

vibrators is in the evaluation of pavements. For this use, both

systems have their respective advantages and disadvantages. Basgically
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the heavy vibrators cannot achieve operating frequencies greatly in
excess of 3,000 to 5,000 cps while the light vibrations are unable to
transmit sufficient energy into the structure to obtain data relating
to deeply buried layers; this is particularly the case for structures
with very stiff surface layers such as concrete slabs. Both of these
respective limitations confine the detail and accuracy of the disper~
sion curves required to extract the maximum information about the
properties of the pavement under test. Simple deep asphalt structures
may not require the use of frequencies in excess of 5,000 cps but in
some of the more complex, traditional pavement constructions frequencies
up to the 30,000 to 50,000 cps range may be needed to define individual
layer properties., This is particularly the case if details of wearing
courses are required. The method in which the test data is inter-
preted also influences the degree of importance attached to the high
frequency range. Methods which involve detailed comparison of dis-
persion curves obtained in the field with theoretical curves by means
of overlays and similar methods (see Chapter 4) rely heavily on data
from the high frequency range. Those which depend more on the general
characteristics of the curves and the points of termination of the
various branches (Vidale, 1964) suffer less from a lack of high fre-
quency detail but are improved when it is available,

Heavy vibrators and their complex auxiliary equipment reduce
system mobility greatly and are obviously not suited to applications
requiring access to confined construction sites and rough terrain.
Their capital cost is also very great compared to the simple light

vibrator systems. Large facilities do, however, provide the opportunity

to incorporate a maximum of equipment for the automatic reduction of
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test data. Primary reduction of raw frequency/phase difference data
may become a heavy burden and even with basically manually operated
equipment it has been found advantageous to develop specially designed
chart tables and drafting aids to ease this task (Jones, Thower and
Gatfield, 1967). The degree to which the test procedure and data
interpretation can be fully automated is debatable. The need to monitor
the results of field tests as they proceed and thus avoid selection

of inappropriate pick-up siting, frequency range or other difficulty,
requires an automatic system to be sufficiently flexible that an operator
can intervene when it is apparent that an unprogrammed condition has
occurred.

Except for special applications the goal of ongoing equipment de-
velopment research for the wave propagation method is to achieve a
system with the maximum operating frequency range, with sufficient power
at any frequency to gain sufficient penetration of the field of excita-
tion and with maximum mobility. It is unlikely that the ideal goal
will be met in a single model but, with careful attention to both
design gnd operating procedure, it should be possible to produce one
or two complimentary systems capable of operating satisfactorily in
a wide variety of situations.

Alternate Methods

In recent years a number of innovations in the wave propagation
method has been investigated., These have largely been attempts to
overcome the problem of data interpretation currently limiting the

method's applicability. Workers at Laboratoires Routiers have in-—

vestigated the possibility of measuring the amplitude of the surface

wave propagating away from a vibrator and the utilization of this
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data as an aid to interpretation. Gramsammer (1968) has reported on

a successful experimental program in which amplitudes at various dis-
tances from the source were measured on the surface of simple struc-

tures,

The standard wave propagation method involves excitation by means
of a vertically oscillating vibrator which produces generalized Rayleigh
waves in the structure, Other types of excitation are possible., Jones
(1958) used a linear vibrator operating parallel to the surface of the
ground and observed Love waves propagating in a layer of silty clay
overlying gravel., Cogill(1965) built a torsional vibrator specifically
designed for the generation of horizontally polarized shear waves (SH)
in soils. Recognizing the somewhat simpler problem of analysis posed
by the propagation of SH waves in layered media, Kurzeme (18708, working
at the CSIRO in Australia, built a torsional vibrator capable of ex-—
citing SH waves in pavements (Kurzeme, 1970b). In combination with
appropriate theoretical studies he was able to use this wvibrater to
achieve some interpretative ability for data cbtained from highway
structures (Kurzeme, 1971). However, many similar problems to those
found for Rayleigh wave propagation were encountered. In additiom, in
typical pavement structures, in which the surface layer is more rigid
than the underlying layer,no information can be gained about the lower
layers with this method. There remain, however, a large number of un-

explored areas in the study of alternative procedures for the wave

propagation technique.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

General

The wave propagation method of nondestructive testing originated in
dynamic loading tests of pavements. It has developed into a specialized
procedure but the test equipment is generally in prototype form and
operated by a limited number of research centers. A review of the lit-
erature revealed that the method has been applied in a variety of site
investigation situations in addition to pavement evaluation. The method
is frequently used in conjunction with other tests om pavements, including
those involving other forms of dynamic loading.

The advantages and disadvantages of the method were studied and
discussed in Chapter 1. In addition to the nondestructive nature of the
test and the speed of operation, its principal advantage ig its ability
to obtaln in-situ properties of a structure. This factor is of increas—
ing importance as greater reliance is being placed on pavement design
methods which require the basic moduli of the materials as input. The
primary disadvantage of the method is the regtricted ability to accurately
interpret all of the data obtained during testing. Valuable interpreta-
tion of data from simple structures can be made but many practical systems
can be only partially evaluated. To obtain an understanding of the basic
phenomena of wave propagation in layered structures, 2 study of simple,
plane structures under vibratory loading was undertaken.

Vibratory Excitation of Plane Layered Structures

The results of the study reported in Chapter 2 show that the surface

motion on a layered system subjected to vibratory excitation is very

complex., It may be considered to be the superposition of an infinite
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number of simpler wave motions known as modes. In layered elastic
systems, modes were found to have either the form of wave motions
which propagated horizontally away from the source without loss of
amplitude, or the form of waves which attenuate with increasing distance
from the source. In visco-elastic systems all modes are attenuated.
The characteristics of the various modes were investigated and the
different types are illustrated in Fig. 2.6,

The relationship between the frequency of excitation and the form
of the surface waves was studied. There was found to be a separate curve
in complex space, relating frequency and wave length (defined in the
form of a wave nuﬁber),for each mode of propagation., These curves, or
secular lines, were shown to form families of three dimensional branches.
The projection of these functions onto the real plane are known as dis-
persion curves and are obtained experimentally by the wave propagation
test.

The properties of the secular lines for a single elastic layer over
a rigid solid were studied in detail. The form of the curves is illustrated
in Fig. 2.5 and the nature of the singularities which occur in them is
analyzed in Appendix 1.

Methods of Analysis for Multi-layered Structures

The propagation of waves in multi-layered structures poses a difficult
analytic problem, particularly if solutions are required in numerical
form. The available methods of analysis, some of which originate from the
field of seismology, have been reviewed in Chapter 3. Structures which
decrease in stiffness with depth have received limited attention because
they are of little importance in seismology. They also pose the most

difficult analytic problems.
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Two approaches to the problem were developed here, The first is based
on the solution to the general equations of motion, as constrained by the
boundary conditions imposed by the structure. The problem is formulated
in a manner which allows it to be reduced to the form of linear algebraic
equations. This method was used to prepare a computer program designed
to compute dispersion curves for structures resting either on a rigid
base or a visco-elastic half-space. (See Program HASK, Appendix 3).

This program is an economic means by which simple structures may be
analyzed but, in some situations, the functions are difficult to manipulate
and the numerical methods used to obtain the solutions break dowm.

These difficulties are a common feature of algorithms based on solutions

to the general equations of motion. These problems restrict the utility

of the technique, especially if detailed characteristics of the wave
propagation phenomenon are to be studied. Nevertheless, the capability

of the FORTRAN language to incorporate complex functions makes it

possible to use Program HASK to study the three dimensional nature of

many of the important secular lines.

The second approach to the analytic problem involved the discretiza-
tion of the structure into elements of finite, or semi-finite, dimension.
The behavior of this discretized model, when subjected to vibratory
excitation, has been analyzed by the direct stiffness method (see Appendix 4).
A computer program (SPRDSP), described in Appendix 5, has been developed

which allows the excitation of models of this type to be studied in con-

giderable detail.

This method has the advantage that there are a finite number of roots

to the secular equation, all of which may be determined without ambiguity.

In addition, the mode shapes may be studied in detail.
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In practical application, however, the direct stiffness method was
found to have limitations. The discretized model is an imperfect repre-
sentation of the actual structure. The base of the medel is equivalent
to a rigid solid and must be placed at some finite depth. Many pavement
structures are more realistically represented by a system resting on a
semi-infinite half-space. The presence of the rigid base in the model
allows energy to be reflected back into the system., This does not usually
occur in the prototype. A modified boundary condition was developed to
minimize this difficulty, and is discussed in Appendix 4, but a fully
satisfactory solution to this problem has not been found.

The discretized model must conform to the assumptions inherent in
the direct stiffness method. This frequently requires that the model
be divided into a large number of sub-layers. The number of similtaneous
equations which must be solved to obtain the solutions is then also very
large. This demands large blocks of ccmputer core and long execution
times which may restrict the methods practicality.

Fundamentally, however, the greatest difficulty found in the
study of wave propagation in layered media was the complexity of the
solutions, the large number of variables and the overwhelming detail
involved in all but the simplest cases. Program SPRDSP was used to
assist in the interpretation of the secular lines representing dispersion
in a single layer over a rigid base. (See Chapter 2). For more complex
structures the quantity of data was found to be unmanageable and, with
the present limited understanding of many of the basic phenomena, did

not materially assist interpretation.

Despite these difficulties, an improved capability for the analysis
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of elastic and visco-elastic structures was achieved. To help define
the areas of greatest practical interest, there is a need for well
documented case histories of field tests. A minimum of this type of
information was found in the literature.

Interpretation Techniques

A review of the literature (see Chapter 4) revealed two principal
approaches to the interpretation of dispersion curves obtained in wave
propagation testing. The first relies on comparison of the high frequency
range of the dispersion curve, obtained from the field, with the correspon-
ding portion of the results obtained from an analysis of analogous plate
structures. This method is considered to yield reliable values of material
properties for simple structure which fall within certain specified limits.
In general, it was found to be applicable to stiff, concrete or asphalt
pavements resting on soft subgrades but only useful for the determina-
tion of the properties of the surface layer of more complex structures.

The second approach was found to have greater generality of applica-
tion. The complete family of dispersion curve branches is considered.

The general characteristics of the various branches, particularly their
terminal points, are noted and compared with similar properties obtained
in analytic studies. From this, it is possible to interpret the approxi-
mate material properties of the various layers in a structure subject to
test. While this method allows fairly complex structure to be studied,
the precision of the interpretation is somewhat uncertain. An analysis

of a simple thick-1ift asphalt pavement, made with the aid of the computer
programs developed during this study, showed that a number of the assump-
tions inherent in this type of interpretation are either of uncertain

accuracy, of in some cases, unwarranted. This study established the need
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for further investigation of the basic characteristics of the secular
functions, particularly for systems with properties similar to those of
practical structures.

Application of Results

A principal advantage of the wave propagation method of testing is
the ability to determine i{n-situ material properties. Thus, the need to
account for a variety of environmental factors is eliminated. However,
the loading imposed by the test equipment is dissimilar to that usually
imposed by vehicles. The differences in strain amplitude are of major
importance.

A review of the rheological response of soils and bituminous
materials was undertaken and is presented in Appendix 6. It was shown
that soil properties may be represented in the form of complex moduli.
While sufficient experimental data is not available for all soils, it
is possible to modify moduli obtained from wave propagation tests O
yield properties suitable for use in analyses of structures subject to
vehicular loading. Bituminous materials are also affected by the fre-
quency of the loading and climatic conditions. These factors must also
be considered when reviewing the results of wave propagation tests.

Equipment Design and Test Procedures

Equipment and test procedures for the wave propagation method were
reviewed and inspected in the field. The results of this study are pre-
sented in Chapter 5. There were found to be a variety of equipment
designs, many used in special applications, but two principal catagories

can be recognized.

The first catagory includes systems designed around light weight

vibrators. They are used in a number of applications where simplicity
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and high mobility are an advantage. 1In many'cases absolute material
properties are not required, This occurs when the Investigation can be
limited to a comparison of relative conditions from site to site or over
a period of time, Light weight equipment has the potential to produce
data from which detailed dispersion curves for the high frequency range
may be constructed, Light weight Systems are suitable for use in con-
junction with interpretation techniques which rely upon this portion of
the curves, Their energy production is low, however, and they are re-
stricted in their ability to reveal the Properties of buried materials.

The second catagory of equipment is less mobile and considerably more
expensive to develop than the light weight equipment. Based on heavy
vibrators, these systems generate high energy excitations which are cap-
able of penetrating to considerable depths beneath pavement structures,
They are well suited to the testing of exiting pavements, preparatory
to the design of overlays, but tend to be restricted to the moderate to
low frequency range. Theoretical considerations, which have been discussed
in Chapters 3 and 4, indicate that this limitation may prevent the
application of some of the available interpretation methods to data
obtained with this type of equipment.

The field investigations, which formed part of the research program,
demonstrated the importance of careful equipment design and procedural
organization., Simplicity of design, versatility and mobility of the
equipment together with reliable procedures, which minimize operator
fatigue and allow rapid execution, are essential. The interpretative
technique to be applied to the field data should be considered in the
design of equipment. Some methods require a high frequency capability

while, for others, the equipment should be capable of producing excitation

at great depth,.
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Recommendations

From the investigations reported here, three major divisions of the
factors involved in wave propagation testing can be recognized. These
are; the nature of the basic phenomena of wave propagation in layered
systems, the practical interpretation of dispersion curves obtained from
field tests and the design of testing equipment.

Many of the basic phenomena have been studied here and analytic
tools have been developed. These studies should be extended to other
simple structures which have characteristics similar to practical
systems. Particular attention should be paid to singularities in the
secular lines and their form in complex space. Program HASK, or a similar
algorithm, should provide an economic aid in conducting these studies
and the detailed results which can be obtained from the direet stiffness
method may be of assistance. Improved understanding at this level would
assist in interpretation of the more complex features of dispersion curves.

Due to the unmanageable quantity of data output from the analysis
of models of the more complex types of pavement structure, it is recommended
that future studies of this type should be conducted in close conjunction
with carefully monitored field testing. In this way, those partions of
the theoretical results which are of practical importance could be
jsolated and the problem reduced to manageable proportions. There are,
at present, insufficient fully documented case histories available in the
literature to be of assistance in this respect.

The theoretical studies presented have demonstrated, that in

designing wave propagation testing equipment, close attention should be
given to the interpretation method to be used in reducing the data, Close

cooperation between analytic research and equipment design studies is
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recommended. In this way, the most appropriate data can be obtained in

the field and theoretical research may be concentrated in areas likely

to yield the most practically fruitful results.
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APPENDIX 1

PROPERTIES OF THE SPECTRAL LINES FOR AN ELASTIC LAYER OVER A RIGID SOLID
The spectral lines for an elastic solid layer in welded contact with

a rigid solid are of the type shown in Fig. 2.5 which were obtained

from Eq. €.22). Eq. 2.22)is, in general, complex and may be expressed

in the form:

F(k , wy = Fl(k. k w) + in(k

Lok Ky 5 @) (AL.1)

1 >

where k = kl + 1k2 .

At any point in the real plane k, = 0 and F(k , w) 1is real

so that:

Folk, , 0, w) =0, (Al.2)

For a point in close proximity to the real plane, i.e., at

F(kl + ibk, , @) Eq. (Al.2) may be expanded into a Taylor series:

Akz 3F2
F(kl + ik2 s w) = Fl(kl N 0 N (.U) + i—ﬁ‘ﬁ; (kl ’ 0 s Ll.\) (Al.3)
+ L

For a point on a complex spectral line both the imaginary and real

parts of this expression must be zero in accordance with the require-

ments of Eq. (2.22), i.e.,

Fl(kl,o,w)=0
and (Al.4)
BF2
Akzﬁf_(kl’ 0, w =20
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if only the leading terms of Eq.(&l.B) are retained,

As Eq. (2.22) is an analytic function, the real and imaginary

parts must gatisfy the Cauchy-Riemann condition:

(Al1.5)

and as Ak2 # 0 on a complex spectral line Eq. (Al.5) may be written:

F(k w) =0

1 E)
and

oF

(Al1.6)

*

lLet any pair of roots of the first equation of Eqs. (Al.6) be L3 and

w* then from the first equation of Egs.

(A1.6) and the value of the

function in close proximity to the real plane:

F(ki ,w*y =0

and

(A1.8)

F(kE + 10k, w®) = 0 .

Eqs. (Al.7) indicate that a gmall movement away from the point

(ki , W¥) perpendicular to the real plan

e is a movement along a com—

plex branch. Thus, near the real plane each complex branch is con-—

tained in a plane perpendicular to the real plane.

Expanding

F(kk + 18k, » w* + Aw)

in a Taylor series about (ki , W) and

before gives:

applying the same methods as
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oF
- ok, Kk  w)

dw  _ Aw 1 (A1.8)
Ty~ gy GR) T3 ‘
2 Ak2+0 1k Ea(kf , wk)

aF
In general sa{ki , w*¥) is not zero but from the second equation

F
of Egs. (Al.6) %Ef{ki , W¥) 1is zero so that:
1

Jw
atikz)

(ki , wk) =0 (Al.9)
Thus, the projections of the complex branches on the imaginary

plane are perpendicular to the real plane so that Eqs. (Al.7) and Eq.

(A1.9) together prove that the complex branches are perpendicular to

the real plane where they intersect it. Similar arguments can be applied

to the purely imaginary branches.

The method of expansion into a Taylor series may also be applied

to
oF _ dw oF  _
1 1
to show that
ow . =
Bkl(kl s W ) =0 . (Al.ll)

Therefore, the complex branches intersect the real plane at points
on the real branches where their slope is zero. Again this argument
can be applied equally to the purely imaginary branches.

Noting that if

F(k , wy =0 ona branch line

then G(k2 . wz) = 0 . Thus all branches have mirror images about the

plane © =0 . Assuming that G(k2 , wz) is continuously differentiable
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with respect to w even at w =0 , k # 0 it may be concluded that
the branches must be perpendicular to the plane w =0 .

All of the above conclusions are supported by the numerical values

obtained for the roots of Eq. (2.22).
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APPENDIX 2

THE THOMSON-HASKELL METHOD FOR THE ANALYSIS OF
SURFACE WAVES ON MULTI-LAYERED MEDTA

Thomson (1950) presented a method for the analysis of waves trans-
mitted through a stratified solid medium which formulates the problem
in terms of matrices. This type of formulation is well suited for com-
putation using a digital computer. However, there is an error in
Thomson's presentation invelving the boundary conditions at the inter-
face between two layers. Thomson's analysis implies that shear strain
must be continuous across an interface when in fact the correct boundary
condition requires the shearing stress be continuous across the boundary.
This error was noted by Haskell (1953) who also simplified the notation
used by Thomson (1950).

The method used here closely follows Haskell's (1953) notation
with minor revisions and further simplifications but is also extended
to include the case where the layered media rest on a rigid solid,

Consider a layered system of the type shown in Fig. A2.1 which
consists of layers extending infinitely in both the x and y direc-
tions in the horizontal plane. The system is excited by the forcing
function Pe.imt which is constant in the y direction. Thus the
model describes a plane system.

This disturbance in any layer m may be described in the form of

displacement potentials as:

©
[

(4, Sinh(r kz) + By Cosh(rjka)] expliklct ~ )] (A2.1)

[Cm Cosh(smkz) + Dm Sinh(smkz)] explik(ct - %))

h=s
]

where
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r = ir = V/ l1-c¢ /az
8, = is=v 1~ c2/82

The velocities and stresses at the bottom of the mth layer

(z=4d ) can be expressed in the matrix form,

where [Fm] =

Sinh(rmkdm)
ir Cosh(r kd )
2 m m m
k
G b Sinh(r kd )
m m mom
where

o
(|

; -2i - -Gb_Sinh (s_kd )
-2iG_x Cosh(r kd ) -2iC r Sinh(ykd ) -Gb Cosh(s kd ) 3 b (s kd

M e = - 1

u/c Am
&/c Bm
= [F,] (A2.2)
o) C
zZ m
a D
ZX m
e —-—n . c—
Cosh(rmkdm) -ismSinh(smkdm) -1smCosh(smkdm)
irmSinh(rmkdm) Cosh(smkdm) Sinh(smkdm)

Gmmeosh (rmkdm) =2 iGmSmSJ'nh (smkdm) —2iGmsmCosh (smkdm)

2 - /g

w/e

shear modulus
layer thickness

layer number

th
interface number at bottom of m layer
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At the top of the layer (z = 0) the velocities and stresses are

given by:
Am u/e
B -1 w/c
= [E ;] (A2.3)
C c
m zZZ
Dm % 2x
—_—_ — -n-1
where
4] —1bm/rm 0 —1/Gmrm
a1 1 -2 0 1/6, 0
[En—l] T2
k (bm—l) 0 =2 0 —1/Gm
ib /s 0 ~-1/G s 0
m m m m
and n - 1 refers to the interface at the top of the mth layer.
Substituting Eq. (A2.3) into Eq. (A2.2) yields the following re-
lationship between interface velocities and stresses at the top and
bottom of the mth layer.
u/c ufc
wie w/c .
- A2,
[g,] ( )
a a
ZZ zZ
a a
L~ ZX ZX
—n L ~n-1

where
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-1
lg,] = (105 ;170
th
Similarly for the (m ~ 1) layer.
o/c d/c
w/e é/c
= [g 4] (A2.5)
G m-1 o
zz zz
o] o
ZX X
L— —n-1 — —n=2

Imposing the boundary condition that there must be continuity of stresses

and displacements across the interface between the nfh and (m - l)th
layer and combining Eq. (A2.4) and Eq. (A2.5) gives:
t/c a/c
w/e w/c
. = [g g _,] (A2.6)
zz Y2z
Tux T zx
L —in —  —In-2
Noting that at the free surface the boundary condition is O,z = Cop = o,
the relationship between the velocities and stresses at the n inter-
face and those at the free surface is thus:
— — =
u/c u/c
w/e @/c
= [gm][gm,1] ves [gll (A2.7)
Ggz 0
o N 0
= Jda L do
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By substituting Eq. (A2.7) into Eq. (A2.3) an expression for the con-

stants 1s obtained.

A1 /e
B w/e
1
c = [J] (A2.8)
1 0
D 1 0
— - — o

where [J] 1s the 4 X 4 wmatrix:
[31 = {E 17 [g 1lg__.1 +.. [g]
n m” - Cm~-1- **° 1

Note at this point that the nth interface is at the top of the
deepest elastic layer for the case of a system resting on a rigid solid
but at top of the half-space where the system rests on an elastic half-
space,

Eq. (A2.8) is perfectly general but for solution the boundary con-
ditions at the bottom of the (m + l)th layer must be considered and
each case must be treated separately.

Layered System Resting on an Elastic Half-space

The boundary conditions at the bottom of the (m+ l)th layer are
zero displacements and stresses at infinite depth. 1In addition, because
no energy can be reflected back from the bottom of an infinitely deep
layer, r and & must both be imaginary in the half-space. Under

these conditions,

(A2,.9)
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and Eq. (A2.8) becomes

8 ]

[~ = M -1
R A1 G/e
A _ w/e
- c = [J] (A2.10)
w1 0
C i1 0
L - L o
. which gives:
Jna = J
. . rs 22
(B/W?O = 3#"—:—3;g . (AZ2.11)
11 21
and
i J,n=J
@, = T . (42.12)
31 41

Equating these expressions and presenting the result in determinant

form gives:

) Uup ~ J32)

) (J3p = I4p)

(J.. - J
22 "12 = 0 (A2.13)
(331 ~ Ja3

The value of the wave number k which satisfies Eq. (A2.13) for

any particular value of frequency w may be found by trial and error.

Layered System Resting on a Rigid Plane

All energy incident to the rigid base will be perfectly reflected

th
and there will be zero displacement at the bottom of the (m + 1)

W

layer.
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i,e., At z =4 t/ec = w/e =0 .

Enforcement of these boundary conditions results in the matrix equation

— Am-l-l
Fi1 F12 P13 Fig Bl
. =0 (A2.14)
21 Foa Faz Ty, Cot1
_ 1
D1
Rewriting Eq. (A2.8) in the form:
a2 Tl T I A Y12
mt+l J22 C 0 322 mt1
Jondue = Jusd I
22731 ~ J21732 32
wt1 J92 <0 Jyp mHL
O Y3 W S @ . Taz
m+1l J22 C 0 J22 m+1l

which on substituting into Eq. (A2,14) results in two equations which

may be put into the determinant form:

a a
u 121 2 g (A2.16)
891 y)
where
ay; = Fy035,050703750) + Fp(ap0p,=957750) + Fu 0 09217941722
_ _ - -3,.3
ay, = Fpy(Typ0p17310799) *+ Fp3U3nT0 3397990 + Fpu CunTp17347920)
aj, = Fp Jy, + FioJoy + Fraday v Frdsy

= +
oY) Foidip ¥ Fogloy + Fogday + Foudyn
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in which

ij are elements of the matrix [F]m+l .

Thus a wave number k which satisfies Eq. {(A2.16) must be ob-
tained by trial and error for each excitation frequency w .

The method as developed to this stage is a complete solution of
the problem and is a very versatile technique. By application of the
particular boundary conditions to Eq. (A2.8) many different systems
(e.g. a multi~-layered free plate) may be studied. However, from a
practical point of view there are a number of difficulties.

Numerical Difficulties

The matrices involve hyperbolic functions, some of which may be-
come very large in relation to others. If ¢ < B <o both «r and
m

s~ are real and r > s . When rmkdm is large Cosh(rmkdm) and

Sinh(rmkdm) both become very large in relation to Cosh(smkdm) and
Sinh(smkdm). In this case, as the matrix multiplications imply addi-
tion and subtraction, those elements which involve s =~ are swamped
by those involving ro and'tend to have no effect on the values

stored by a digital computer.

Thrower (1965) has discussed these problems at length and has

proposed a method which prevents terms involving s

However, the new method introduces other precision problems which in-

volve the risk of underflow when low phase velocities are considered.

This difficulty can also be eliminated at the expense of some com-
putational effort.

The general problem of accuracy is always present in computations

involving exponentiation and in this case the advantage to be gained

by the use of multiple-length arithmetic is not great compared to the

being overwhelmed.
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added difficulties created,especially when complex functions are in-—
volved., There are two simple steps which may be taken to reduce the
severity of the problem. The elements of matrix [F] in Eq. (A2.2) may
each be divided by whichever hyperbolic function is large and the

model of the layered system may alsc be normalized in relation to the
properties of one of the layers; usually the surface layer. Another
approach is based on the fact that Cosh(]i'nkdm)2 Sinhtmkdm) and
Cosh@mkdngﬂ Sinh$mkdm) if rmkdm and smkdm are sufficiently large.
Thower (1965) has shown that it is possible to obtain the characteristic
determinant of wave modes which arise from interfaces above the layer
in which this condition occurs by terminating the sequence of matrix
multiplications in Eq. (A2.8) at the matrix [g] corresponding to this
layer and treated the layer as a half-space. This result may be used
to reduce the numbers of computations and thus reduce the risk of over-
flow in some cases but it is limited in scope and cannot be used in
regions where rmkdm is large but smkdm is not or where Yo is
real and 8. is imaginary.

The accuracy of computation required to obtain reliable displace-
ment vectors is much greater than that required if only the charac-
teristics of tﬁe wave motion at the free surface are to be studied.
Detailed information on the variation of displacements with depth below
the surface may also require the introduction of additbnal layers
formed by subdivision of the natural layering. This requires additional
matrix multiplication with a resulting loss of accuracy. For these
reasons it is not advisable to compute displacement vectors with a
program designed to generate dispersion curves.

The computation of a dispersion curve requires that values of the
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parameters ® and k be found for which the characteristic deter-
minant is zero. Other equivalent pairs of parameters could also be
chosen; such are phase velocity c and wave length L . However,
since an iterative technique is required to find the combination of the
pair of parameters for which the determinant is zero, the correct choice
is of importance. One parameter is usually held constant and the other
is varied in steps until a satisfactory result is obtained. This re-
quires that there be a monotonical relationship between the parameters
and in addition the path of the iteration should approximate as closely
as possible a normal to the dispersion curve if difficulties are to

be avoided. Harkrider, Hales and Press (1963) used c¢ as the independent
variable and were unable to obtain values of L for certain regions.
Thrower (1965) demonstrated that the use of L as the independent
variable avoids these problems.

The interpolation method used to find the root is constrained by
the amount of information available as to the characteristics of the
function. While it would be possible to generate the necessity deriva-
tives by methods similar to those outlined previously to generate the
determinant itself the extra work involved far outweights any advantages.
In these circumstances some form of Regula-Falsi method is indicated.
These methods require a pair of approximations, one on each side of the
root and thus some initial procedure is required to search for the
general region enclosing the root. These methods tend to be arbitrary
and difficult to control.

The writer has found that the choice of the frequency w and the
wave number k with ® held constant and the search for a zero deter—

minant made by varying k 1is very effective. The iteration in k 1is
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controlled by Newton's method but with numerical differentiation. For
the cases investigated, the relationship between w and k was well
suited to this technique if the usual requirement of the Newton method,
that the first approximation is sufficiently close te the root to
allow monotonical convergence, was observed. The Newton method also
avoids the necessity for a dual procedure as required by Regula-Falsi
methods, It is also rapidly convergent.

A major problem encountered in generating dispersion curves is
"mode jumping.'" In general there are an infinite number of roots to
the secular equation and many may be closely packed in space and they
often cross at very acute angles. In these cases the first approxima-
tion to a root must be of very high quality if the iteration scheme is
not to converge to a point on a dispersion curve associated with a
mode other than that originally being followed. If mode jumping occurs
there is often the danger that the error will pass unrecognized with
resulting misrepresentation of the form of the dispersion curves.

Methods for the computation of dispersion do not usually yield
reliable values of group velodty, (dw/dk), with practical economy and
this requires that predictor methods for curve following rely upon
numerical differentiation with its attendant unreliability. Thus the
basic method available to minimize the risk of mode jumping is the use
of appropriately small step sizes. Thrower (1972) has suggested an
interesting alternative method to reduce the mode jumping problem.

A point on a dispersion curve must satisfy the condition:
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Ak , w) =0 (A2,17)

where:?




A = the characteristic determinant
of the secular equation

k = the wave number

w = the frequency

Consider instead curves satisfying:
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A(k , w) = constant (A2.18)

Dif ferentiating gives:

dw A ,3A

PE - safgi . (A2.19)

This is a differential equation for curves satisfying Eq. (A2.18).
Eq. (A2.19) may be solved by the choice of some initial conditions and
the use of an appropriate numerical method and contours of A may be
obtained. A dispersion curve corresponds to the contour A =0 . Such
a method would be expected to suffer less from mode jumping than pre-
dictor corrector methods but again Eq. (A2.19) involves differentiation
with attendant difficulties.

The secular equation for wave propagation in layered media com-
posed of elastic materials contains may singularities at points where
the dispersion curves move from one plane to another in complex space.
It is not possible to follow a dispersion curve through those points by
any of the methods described above and it is necessary to treat each
branch of the curve separately.

In summary, the generation of dispersion curves for waves propa-
gating in layered media poses a difficult numerical problem requiring
a ecritical review of computational results if erroneous conclusions

as to the nature of the phenomenon are to be avoided.
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APPENDIX 3

COMPUTER PROGRAM HASK
A program for the computation of dispersion curves for multi-layered
media by the Thomson-Haskell method. The theoretical methods employed

are described in Appendices 2 and 8.
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PROGRAM HASK
SECTION 1: PROGRAM IDENTIFICATION
Title: Wave Dispersion By Thomson~Haskell Method
Program Code Name: HASK
Writer: D. J. Watkins
Organization: Department of Civil Engineering, University of

California, Berkeley, California, 94720, U.S.A.
Date: May 1973
Updates: None, Version 0
Source Language: FORTRAN IV (CDC 6400)
Availability: Complete program listing Fig. A3.1

Abstract: Program computes wave numbers and phase velocity
of the surface wave as roots of the secular equa-
tion for wave propagation in multi-layered media,
The layered system may rest on a half-~space or a
rigid solid. Up to 20 layers may be modeled.
Material damping within layers may be simulated
by the use of complex body wave velocities.

Imaginary, real or complex roots may be computed,
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SECTION 2: ENGINEERING DOCUMENTATION

Narrative Description

Program HASK —— "Wave Dispersion by Thomson-Haskell Method" —
computes dispersion curves for waves propagating in layered media. Up
to 20 layers can be included in the input. Each must be described in
terms of its mass density, thickness, and velocity of propagation of B
and S—waves in the material of which it is composed. Material damping
in any layer may be input in the form of complex P- and S wave ve~-
locities. The program calculates and prints coordinates of frequency,
wave number and phase velocity and the characteristic determinant of
the secular equation, The user is called upon to critically review the
results and check that a continuous spectral line has been followed.

Method of Solution

The program uses the matrix formulation of the secular equation to
compute dispersion curves for waves propagating in layered media. This
formulation is wvariously knoun as Thomson or Haskell method and the pro-
gram uses the medified form presented in Appendix 2.

The following assumptions are implicit.

1. The layers are of infinite lateral extent and are

homogenecus and isotropic.

2. The materials forming the layers are either linearly

elastic or visco—elastic.

3. The layers are in welded contact.

Curve following is achieved by a predictor—corrector method. The

first root is obtained by iteration from an initial value supplied at
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input. The second iteration to a root uses the first root as an initial
value and is displaced from the first by an arbitrary shift along the
frequency axis. Successive points are predicted by Newton's divided
difference extrapolation of increasing order up to the third. The cor-
rection is performed in all cases by Newton's method of iteration. The
step-size along the frequency axis is optimized by the method given in

Appendix 8.

Program Capabilities

A maximum of 20 layers may be included in the model. The system
may rest either on a half-space or a rigid solid. Complex, imaginary,
or real branches of the dispersion curves may be analyzed. The curve
following technique is designed to adjust its accuracy as the complexity
of the curves requires but "mode—jumping" cannot be avoided altogether.
No attempt is made to negotiate signularities which occur in curves for
purely elastic systems,

The computations involve exponentiation and are therefore subject

to loss of accuracy under certain conditions. There are two variables,
/ /.2 3,,2
RMKD = d K% - w2/a2 and SMKD = d V k™ -~ w’/B

where

¢ = P-wave velocity
8 = S-wave velocity
k = wave number

d = depth of layer

for each layer which. are subject to exponentiation. Depending upon the

capability of the system,
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{f either of these values exceeds approximately
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740,0 the computation cannot be performed by the commonly available
library subroutines. The program detects the occurrence of this condi-
tion and prints a warning.

To avoid misinterpretation of the results, the user is called upon
to review the output critically to ensure that mode-jumping has not
occurred and that the roots obtained by the iteration are reasonable.
Loss of the curve being followed can usually be rectified by choosing a
narrower range of frequency for the computations and building up the
curve in stages. The maximum allowable step—size in the curve following
algorithm is closely related to the range of frequency; small for small

frequency range, larger for wider range.

Data Inputs

The data are input from punched cards using the format shown below,

Any compatible system of units may be used but the frequency must be in

radians/second.
CARD
GROUP FORMAT COLUMN DESCRIPTICN
A 2110, 2F10.0 1 -10 NL - No. layers in the system
(including the half-space if
present)
11 - 20 MOP - Set as follows:

1 4if system rests on a half-
space

2 if system rests on a rigid

solid
21 - 30 OMF ~ The excitation frequency
at which the curve is to be
initiated
31 - 40 OMI, — The excitation frequency

at which computation is to be
terminated




B 8F10.0 1-10 D(I, 1) - The real and imaginary parts
11 - 20 of the complex P-wave velocity
21 - 30 D(I, 2) - The real and imaginary parts
31 - 40 of the complex S-wave velocity
41 - 50 D(I, 3) - The mass density
51 - 60 Leave blank
61 - 70 D(I, 4) - The depth of the layer
71 - 80 Leave blank

Group B consists of NL cards, one for each layer commencing with
the surface layer. If the system rests on a half-space include a card

giving its properties but with columns 61-70 set to 1.0,

c 2F10.0 1- 10 KG - the value of the wave number
11 - 20 (which may be complex, real or
imaginary) to be used to start the
iteration to find a root at the
initial frequency OMF

Program Options:
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There are no special options other than that controlled by the option

switch MOP described in Card Group A above., The program terminates upon

receipt of a zero value for the number of layers NL .

Printed Output:

The printed output consists of a reformatted playback of the input

data and a tabulation of the results., See Fig. A3.4.

Other OQutputs:

All output is produced on the line printer. No special messages
other than those on the printed output are produced.

Sample Run:
A sample problem for program HASK is gshown in Fig. A3.2, The input

data is shown in Fig. A3,3 and the resulting output in Fig. A3.4.
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SECTION 3: SYSTEM DOCUMENTATION

Computer Equipment

Program HASK was developed on a CDC 6400 computer with 65k core
memory. The computer uses a 60~bit word length with floating point
arithmetic performed in single words. The core cycle time is 1,0 yu

sec. per memory bapk but interlacing of up to 10 memory banks is possible.

Peripheral Equipment

The following peripheral equipment was used during development of

this program: CDC 405 card reader. CDC 501 or IBM 1403 line printer.

Source Program

The source listings for HASK and subroutines DETER, SECNT and

EXTRAP are given in Fig. A3,1,

Variables and Subroutines

The principal variables in the program are as follows:

OM - frequency (real)
K - phase velocity (complex)

KG - wave number approximating a root of the secular
equation (complex)

C - phase velocity (complex)

D(I, 1) - P-wave velocity in layer I (complex)

D(I, 2) - S-wave velocity in layer I (complex)

D(I, 3) - mass density of layer I (real mo. treated as complex)
D(I, 4) — depth of layer I (real no. treated as complex)
DET - characteristic determinant (complex)
NL - number of layers (integer)

MOP ~ option switch for base of system (integer)




OMF - initial frequency (real)

OML - final frequency (real)

The program consists of the following parts:

1.

HASK. Main program for input, output and curve following.

Calls DETER, SECNT and EXTRAP

Subroutine DETER. Computes the characteristic determinant,

Subroutine SECNT, Iterates to a root of the secular equation
by Newton's method with numerical differentiation. Calls

DETER.

Subroutine EXTRAP. Predicts next root along dispersion

curve and optimizes step size in frequency.

Library Subroutines, Subroutines for computation of a
complex number from two real arguments (CMPLX), extraction
of the real part of a complex number (REAL), extraction of
the imaginary part of a complex number (AIMAG), complex
absolute (CABS), complex exponentiation (CEXP), absolute
(ABS) and integer to real conversion {FLOAT) are required

and are supplied by the system.

Data Structure

No files are created by the program. Data is read from file

INPUT.

Output is written on file OUTPUT.

Storage Requirements

This program requires less than 50,000 octal words of storage.

Maintenance and Updates

None to date.
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SECTION 4: OPERATING DOCUMENTATION

Operator Instructions

There are no special operator instructions.

Run Time

Execution time depends upon the number of soil layers used and
other problem parameters. The sample problem with a single layer over
a half-space was executed in approximately 1.8 secs on the CDC 6400

computer,
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FIG, A3.1
LISTING OF PROGRAM HASK

(The next three pages form Fig. A3.1)
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a, = 1000 m/s

0.38/'m Asphalt B, = 400 mss
L= 2.4 kg/m3

o, =300 mss
Clay B, =140 m/s

o 1.9 kg/m"
Half-Space

'
{

Fig. A3.2 SAMPLE PROBLEM FOR PROGRAM HASK
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FIG. A3.4
SAMPLE OUTPUT FROM PROGRAM HASK

(The next page forms Fig. A3.4)
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APPENDIX 4

THE DIRECT STIFFNESS METHOD FOR THE ANALYSIS OF WAVES
IN MULTI-LAYERED MEDIA

The direct stiffness method for the analysis of waves in multi-
layered media was developed by Lysmer (1970) and is based upon dis-
cretization of the half-space into finite elements, The finite element
method in its general form is well known (Zienkiewicz, 1971), so that
the full development will not be shown here. The principal steps of
Lysmer's (1970) method as outlined below follow the original with only
minor changes in notation and sign convention according to the system
used by Lysmer and Drake (1972)-

Harmonic displacements in the layered system of the type shown in

Fig. (A4.1) may be expressed as:

[er]
1]

u{z) *+ exp{iwt - ikx)
x (A4.1)

wiz) + exp{iwt - ikx)

O
n

where

§ and 62 are the displacement with
* respect to the ccordinate
x and =z respectively
w = frequency of the motion
k = wave number
u(z) and w(z) are the horizontal and

vertical amplitude func-—
tions respectively.

The sign conventions are as shown in Fig, A4.1l. Note that the

layered system rests upon a rigid solid half-space. The structure

consists of n layers, each of which may have its own mass density pj,
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shear modulus Gj and Lame's constant Aj = 2ijj/(1 - 2\3? where vj
is Poisson's ratio.

The basic assumption of Lysmer's method is that all displacements
vary linearly with =z within each layer. In order for this assumption
to be reasonable, the thicknesses, dj s of the layers shown in Fig. 4.1
must be chosen small compared to the wave length of shear waves in the
layers. For this reason the number, n, of layers in the discrete system
is usually chosen larger than the original number of layers which is
being modeled. This is easily accomplished by subdivision of the original
layering. The importance of this restriction is discussed by Lysmer
and Waas (1972) and Lysmer and Kuhlemeyer (1969) suggested that the
depth of a layer be restricted to 1/12 of the length of a shear wave in
the medium,

With the above assumption the displacement field of the layered
structure is completely defined by the 2n displacements ﬁxj and
,j=1, ...n , of the interfaces between layers. They will be

§ .
2]
collected in the vector

{a} =W 8 > (A4.2)

and will be referred to as the displacements of the structure. Similarly by
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n
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Eqs., (A4.1), the displacements are defined by the frequency, w , the

wave number, k , and the 2n complex numbers

.. = u(z,)
23 J j=1, «uc,yn (A4.3)

<
I

23 w(zj)

which will be referred to as the amplitudes of the wave and will be
collected in a column vector f{v} . With the introduction of this no-

tation,the displacements of a wave can be written in the simple form
{6} = {v} exp(iwt ~ ikx) . (A4, 4)

The Equatiens of Motion

By application of the finite element method to the layered struc-
ture in Fig. A4.1 Lysmer (1970) obtained the following equation of mo-

tion for generalized Rayleigh waves
([A]kz + i[B]k + [G] - wz[M]){v} = {0} . (A4,5)

In this equation the 2n x 2n matrices [A], [B], [¢], and [M] are
assembled by addition of layer submatrices as indicated in Fig., A4.2,

The submatrices to be substituted for [X]j in Fig. A4.2 are:




2

. [G]j

for matrices

obviously related to the stiffness of the layered structure.

[Alj

[B]j

]

rof =

c\|‘_,°‘

QPA

2(26G.+A,
(26, 3)

(2G6,.+A.)
g

-(G,-A.)
J 1]

~(G,+X,)
J 4

[A]l, [B], and [G], respectively.

0 2G . +A,
( 3 3)
2G
i
0 202G ,+X1 )
j o
G, 0
h
G.-A, 0
( j J)
+
(Gj Aj)
-(G.,+A,) 0
j i
0 G.,-A
( ; j)
0 -G,
J
2G ,+A,
( 3 AJ) 0
0 G,
h|
-(2G,+A,
( GJ kj) 0

s J=l,e00,m

(G +Kj)

.sB

-(G,=X,
( ! J)

-

0
-(2G,+X )
4 y J®l,ee.,m

0

(2G,+X.)
373

et

These matrices are

therefore be referred to as stiffness matrices.

The mass matrix [M] may be assembled from the submatrices

[M]

3

3

/2 0 0 0

153

(A4.6)

(A4.7)

(A4.8)

They will

(A4.9)
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These matrices correspond to lumping of all masses at the inter-
faces between layers, An improvement in accuracy can be obtained by

using the submatrices

1/3 0 1/6 0

0 1/3 0 1/6

M), = p.d, ,3=1, ... ,n (A4.10)
333036 0 1/3 0

0 1/6 0 1/3

which correspond to Archer's (1963) consistent mass matrix, Alternatively

some combination of submatrices Eqs. (A4.9) and Eqs. (A4.10) may be used.
The submatrices defined by Egs. (A4.6)to (A4,10) correspond to in-

dividual layers of the structure. The matrices [A]j . [G]j and [M]j

are symmetric and [B]j is skew symmetric. The assembled matrices

will therefore alsoc have these properties.,

As the motion is harmonic with the frequency w® the equation of

motion reduces to

((aJk% + i[Blk + [C){v} = {0} (A4.11)

where [C] is the symmetric matrix

[c] = [6] - w[M] . (A4.12)

Eq. (A4.11) constitutes a set of 2n linear homogeneous equations
which have solutions {v} if, and only if, the determinant of the co-

efficient matrix vanishes. Hence, for amny given  , the secular

equation

| [a1k? + 1[BIk + [C1| = O (A4.13)
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defines the possible wave numbers for Rayleigh waves in the layered
system.

Eqs. @4.11) and (A4.13) state an algebraic eigenvalue problem. It
can be shown, Wilkinson (1965), that Eq. (A4.13) has exactly 4n  real
or complex roots ks ,s=1,2, ..., 4n , called eigenvalues. The
corresponding solution vectors {v; ,8=1, ,.. , 4n , Eq. 4,11 are
called eigenvectors or mode shapes. A numerical technique for finding
the eigenvalues and the corresponding eigenvectors is given by Waas
(1972).

Group Velocity

The slopes of the secular lines are known as the group velocities

and are defined by:

_ o de |
U = ik = ¢ + kdk . (AL,

These are usually computed in conjunction with phase velocity dispersion
curves by some method which directly or indirectly involves a numerical
differentiation of the phase velocity dispersion curve. The method
outlined here avoids this difficulty.

Consider a solution (wz , {v}) to the eigenvalue problem in Eq.
(4.11) and the slightly different solution (u)2 + d(wz) , {v} + alvh
corresponding to the slightly different wave number k + dk . The

later solution on substitution into Eq. (4.11) gives:

(161 Gk + dk)? + i[B] (k + dk) + [G]

o M@+ dnd) vl + {avd) = {0} .

Premultiplying by {V}T and neglecting small terms of the second order

gives:

(A4,

156
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15)
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{v}T([A]k2 + i[B)lk + [G6] - wz[M])({v} + d{v})

+ {v}T(2KdK[A] - 2uwde[M]){v} = {0}. (A4.16)

The first term vanishes since it contains the transpose of the left-hand

side of Eq. (4.11) and the last term gives, after normalization:

dw _ k/w

T === N (A4.17)
{v} [Ml{v}

dlke

(See Lysmer and Drake, 1972),

Amplitudes of Excitation

The solutions to Eq. (A4.11) yield the basic characteristics of
the excitation propagated along the surface of a layered structure in
the form of wave numbers k and the eigenvectors {v} give the re-
lationship between relative displacement and depth (z) for each node
of propagation. However, the absolute amplitudes of displacements at
the surface, or at any point within the field, cannot be computed from
this information alone. By including the loading in the mathematical
model, Waas (1972) was able to overcome this difficulty. Waas' (1972)
procedure provides the capability to deal with generalized situations
but for present purposes it will be sufficient to consider the case of a
horizontally layered structure subjected to a plane oscillatory line
loading. Such a system is shown in Fig. A4,3., It may be thought of as
consisting of two zones: Zone L on the left and Zone R on the right.

Simulating the reaction supplied by Zone L to excitation in Zone R
by a series of forces applied at node points at the interfaces of the
layers it is possible to model the forces acting on the region x > 0
in the manner shown in Fig. A4.4 in which the factor exp(iwt) dis im-

plied. These forces may be collected in a force amplitude vector {r}
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comprising 2n components ordered in a similar manner to the displace-
ments {8} in Eq. A4.2. The particular forces corresponding to the
normalized sth mode being denoted {P}S . These forces can be computed
by considering the stresses and strains in a typical layer. The strains
in the jth are, by differentiation of Egs. A4.l and recalling Lysmer's

(1970) assumption u(z) and w(z) wvary linearly within the layer

- _ = -8 -
. e, = ik u(z) dj zj+l z)v2 1 + (= zj)v2j+1)
e, - dzéz) - %_ CV2j+2 - v2j) (A4.18)
" YXZ = dl(;QZ) ikSW(Z)

T Y2441 T V241 T ik ((zgy - 2) vy  * (2 = 25) Vai42))

In the present formulation Hooke's law for the case of plane strain

may be stated

-
g (A + 26) py 0 €

X X

o, = by .+ 26) 0 €, - (A4.19)
sz 0 0 G €n

The resulting stresses also vary linearly with 2z as shown in

* Fig. A4.4 and the discretized forces which are in equilibrium with these

- stresses areld
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in which [A]j is the matrix defined by Eq. A4.6 and

[ 1.
0 1/2X. 0 -1/2Xx
3 / h|
D = 1/26, 0 -
[ ]j / 3 1/2Gj 0 (A4,21)
0 1/2Xx, 0 ~1/2X,
J J
-1/2G, 0 -1/26G, 0
/ 3 / N

The complete force system on the plane x = 0 due to the action of
the sth mode may be formed by combining the matrix results of the

sum (kS[A]j + [D]j) in the manner shown in Fig. A4.2 to give:
{p}, = [RI v} (A4.22)
in which
= (i . A4.23
[R]_ = (ik_[A] + [D]){v] (A4.23)
The total motions resulting from all modes which propagate energy

or decay in the xTVe girection is by superposition:

s - 2% a {v} exp(iwt —ik_x) (AL, 24)
s=1 s S =4

161
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in which the wave numbers k  and corresponding mode shapes {v}s are

chosen according to the rules:

1. If + ks is complex or purely imaginary, choose the sign

which give a negative imaginary past.

2. 1If i_ks is real, choose the positive sign if the vertical

compaments of {V}S are real and the negative sign is they

are imaginary.

The superscript R in Eq. (A4.24) signifies propagation and amplitude
decay to the right in Fig, A4.4. The amplitudes of motion at x = 0
are, by Eq.(A4.24):

i = Vo vl = [v] {a} (A4.25)
218 s

in which {a} 1is a column vector containing the "mode participation
factors" Og 5 8= 1, veu 2n , and [V] 1is a matrix containing the
mode shapes in column order.

Eq. 4.25 may be inverted to give:
{a} = [vI"Hu}t (44.26)

from which the mode participation factors for each of the Rayleigh modes

may be computed.

The force amplitudes at x = 0 may be similarly derived from Egs.

A4.22 and A4.23 and are:

2n
(1 =} o Gk a] + DDV
s=1 (A4.27)

= (1[A)[V][k] + [DILVD){a}
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or, from Eq. (A4.26),
21® = [R1{u® (A4.28)
in which [R] is the symmetric matrix:
[R] = 1[A}[VI[KIIVI™2 + [D] (A4.29)

where [K] is the diagonal matrix containing the wave numbers ks ,
s=1, «e. 5, 20 .

The forces {P}L which act on region I in Fig. A4.3 (x < 0) for
the case when waves propagate or decay toward the left may be similarly

shown to be related to the displacement amplitudes {u}L through,
L L
{r}" = [L]{u} (A4.30)

in which [L] is identical to matrix [R] except for a sign change
of all coefficients for which the sum of the subscripts is an odd number.
This sign change concerns the coefficients which relate horizontal forces
to vertical displacements or vertical forces to horizontal displacements
such that all signs are compatible with the global coordinate for the
complete structure shown in Fig. A4.3.

Considering the nodes on the plane x = 0 in Fig. A4.3, the equi-
1ibrium between the externally applied forces {P}I and the reactions

supplied by zones L and R may be expressed as follows:

el = R+ (e (A4.31)

and from Eq. (#.28)and §4.30),

o} = [ri{u}® + wifu}t . (A4.32)




"

For continuity of displacements at x = 0 in Fig. AL.3
= W = ) (A4.33)

and by observing the signs of the coefficients Eq. A4.32 may be reduced

to:

¥ = 2i[Alw K]]I ) (A4, 34)

The vector {P}T for the case illustrated in Fig, A4.3 contains
only a single non-zero coefficient; that corresponding to the plane
vertical loading applied at the surface. The solution of Eq. A4.34 for
the displacements {u} is simplified further by observing that,due to
the symmetry of the structure in Fig. A4.3 about the plane x = 0, all
horizontal displacement on this plane are zero., Thus the solution of
the set of linear equations defined by Eq. (.34)may be reduced to a
problem of half the original size.

Summary of Procedure

The analysis of a plane layered structure subjected to plane dynamic

loading proceeds in the following manner:

A. DISCRETIZATION AND IDEALIZATION

1. Subdivide the structure into layers of suitably

small thickness.

2, Define all materials properties; if necessary in

the form of complex modull.

3. pefine the angular frequency .

I
4. Define the loading on the plane x = 0, i.e. {#}" .

164
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B. ASSEMBLY AND SOLUTION OF THE SECULAR EQUATION
1. Form the matrices [A], [B] and [C] — Fig. A4.2

and Egs. (A4.6), (A4.7)and @A4.12) .

2. Solve the eigenvalue problem in Eq. A4.11 to yield

the matrices [g] and [v1] .
C. DISPLACEMENTS

1. Compute the displacements on the plane x = 0 {u},

Eq. A4.34.
2. Find the mode participation factors =~ Eq.(A4.26).

3. Compute the displacements at any desired point on
the surface or in the interior of the structure -

Eq. (All'c 24) .

The procedure outlined above is designed for the analysis of the
special case of a plane horizontally layered structure. However, the
theoretical method is not restricted to this case. Solutions for axisym-
metric systems have been presented by Waas (1972) and for nonhorizontally
layered structures by Lysmer and Drake (1972).

A Finte Dynamic Model for a Semi-jnfinite Layered Medium

The application of the direct stiffness method to steady-state wave
propagation problems in an infinite medium is restricted by the finite
number of nodal points or sub-layers which can be considered and thus the

discrete model is confined to a finite region. This poses the problem

as to how wave reflections can be prevented at an artificial boundary

which is introduced to limit the size of the model. Lysmer's {197Q)

method eliminates two of these boundaries as shown in Fig. A4.1 in which

the layers extend laterally to infinity in either directionm. The finite
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depth of the model, however, remains. Such a model would accurately
simulate a system of soft layers over a rigid half-space, e.,g., soil
over hard rock, but does not accurately represent a semi~infinite
elastic system.

Lysmer and Kuhlemeyer (1969) developed a viscous boundary which ab-
sorbs a major portion of the impinging energy. Viscous forces may be
applied at the boundary designed to absorb the energy contained in P-
waves and S-waves if the incident angles of the waves are known. How-
ever, the incident angles are usually unknown and must be anticipated.
If the actual incident angles differ from the anticipated angle by not
more than about 60° the viscous boundary is very effective., Lysmer
and Kuhlemeyer (1969) obtained good results with finite element models
of steady-state vertical vibrations of circular footings embedded in a
homogeneous elastic half space. Kuhlemeyer (1969) extended the method
to the case of a layered half space. Good results were obtained in the
low frequency range for cases in which the elastic moduli of the layers
decreased with depth., However, it was observed that in general it is
difficult to predict the incident angles of P- and S-waves at the
artificial boundary because the P- and S-waves undergo multiple re-
flections and refractions at the layer interfaces and the free surface.
In addition, the incident angles often change radically with frequency.

In the case of Lysmer's (1970) model for a layered system the vis-
cous boundary proposed by Lysmer and Kuhlemeyer {1969) may be conveni-

ently simulated by a layer of viscous material at the base of the layered

system.

Viscous Boundary Layer

Lysmer and Kuhlemeyer's (196%) boundary condition may be expressed

as
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Uzz = apow
(A4.35)

SIS bpBh

in which

a, and ¢ L are the normal and shear
stresges respectively

w and 1 are the normal and tangen-
tial velocities respectively

o and B are the velocities of P=waves
and S-waves in the half space
respettively

a and b are dimensionless constants

Consider an artificial boundary introduced at the bottom of a semi-
infinite layered medium which consists of a liquid layer over a rigid
solid as shown in Fig. A4.5. A typical element of the liquid will be as
shown in Fig. A4,6 in which it is assumed that the distribution of the
displacements u and w in the vertical direction z are lineax, as
shown to the right of the diagram,in accordance with the assumption of
Lysmer's (1970) lumped mass method. The liquid is assigned the material
properties G* , p* and X* .,

The forces Fz and Fx at the top of the element in the 2z and x

directions respectively will be

2
K™ e
Fo= 521-50* + 26%)u-exp (iut) - 222 3‘“‘1"1“’“) (A4, 36)
and
h e (1wt) - hp*bu2°exp(imt)
Fx = EEG urexp ({w 3
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when the system is subjected to a harmonic excitation, These forces
must be equal to those obtained from Eqs, @4.35) if Lysmer and Kuhle-

meyer's (1969) boundary condition is to be satisfied. Thus,

)

iwapo-exp (iwt) - wh h(A* + 2G*)W exgéiwt)

- p*ngexp(iwt)

and (A4.37)

%
iwbpBeexp(dwt)-uh %g— u-exp (iwt)

%
- Egguz-exp(imt)

in which the superscript refers to properties of the liquid and terms
without superseripts refer to properties of the infinite medium beyond
the artificially imposed boundary., Now assigning the following arbi-

trary values:

pr =0
h =1,0 (A4.38)
d = 1.0
Eqs. (A4.36) yield
G* = ibwpB (A4.39)
and
A* = iaw Vp (YA + 2G — 2/G) (A4.40)

both of which are imaginary which is as is to be expected for a liquid

layer. The result provides a simple method by which Lysmer and
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Kuhlemeyer's (1969) viscous boundary may be added to models of the type
shown in Fig, (A4,1). A layer of unit thickness is simply added to the
bottom of the model and is assigned the material properties defined by
Egs. (A4,.39) and (A4.40).

Ang and Newmark (1971) developed a "transmitting boundary" to deal
with the problem of the finite model for the infinite prototype. It
also requires some advance knowledge of the incident angles and in es-
sence 1s the same as that proposed by Lysmer and Kuhlemeyer. Ang and
Newmark (1971) used the transmitting boundary in the analysis of ground
shock waves caused by nuclear blasts, The boundary was effective in
cases in which the wave motion was mainly one—dimensional. However,
studies by Hadala (1971) show that the transmitting boundary is useful
in certain two-dimensional shock wave problems in layered semi-infinite
media, when only a short time period after the blast is considered.

Another method of analyzing wave propagation in infinite media is
to employ a very large model with significant damping. Waves generated
at a source are strongly attenuated before they reach the artificial
boundary and are further attenuated on reflection. This approach is
physically justified if the damping is a reasonable measure of the
natural damping of the materials being modeled and the model is suffi-
ciently large. In practice, however, it is usually prohibitively expen-—
sive in computational time and memory requirements even for the most ad-
vanced digital computers.

Steady-state problems such as those posed by the vibratory loading

used in the wave—propagation method of testing are particularly diffi-

cult to deal with in respect to the boundaries of finite models. Unlike

the case of shock loading, in which interest is usually confined to
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the magnitude of the short lived maximum displacements and loads, these
problems require accurate solutions to be obtained in the case when time
tends to infinity. In these circumstances even minor amounts of energy
reflected into the interior of a structure from an artificially im—
posed boundary may result in misleading solutions. This difficulty is
one of the major limitations in the application of the direct stiffness

method to steady-state dynamic problems.
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APPENDIX 5

COMPUTER PROGRAM SPRDSP
A program for the computation of dispersion curves for multi-
layered media by the Direct Stiffness method, The theoretical methods

are described in Appendices 4, 7 and 8.
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SECTION 1:

Title:

Program Code Name:
Writer:

Organization:

Date:

Updates:

Source Languagé:
Availability:

Abstract:
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PROGRAM SPRDSP

PROGRAM IDENTIFICATION
Wave Dispersion by Direct-Stiffness Method

SPRISP
D, J. Watkins

Department of Civil Engineering,

University of California, 94720, U.S.A.
June 1974

None, Version 0

FORTRAN IV (CDC 6400)

Complete program listing Fig. AS5.1

The program computes the wave numbers, mode shapes
and other characteristics of waves propagating in
plane, elastic or viscoelastic layered structures
which are modeled by a system of finite depth con-
gisting of a finite number of layers obtained by
subdividing the natural layering of the structure,
The base of the model is either rigid or energy
absorbing. The dispersion curves for a pre~selected
number of the modes of propagation may be con-
structed. The degree of detail obtained as output
may be selected according to a number of available

options.
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SECTION 2: ENGINEERING DOCUMENTATION

Narrative Description

Program SPRDSP — ''Wave Dispersion by Direct Stiffness Method" —-—
is designed to produce dispersion curves for wave propagation in a plane
elastic or viscoelastic structure. In addition, various options may be
used to obtain details of mode shapes and other characteristics of the
propagating waves.

The structure to be studied must be idealized as a system of plane
horizontal layers of infinite lateral extent. Each layer is described
in terms of its thickness, mass density and the velocity of propagation
of P and S waves in the material of which it is composed. Material
damping in any layer may be input in the form of the percentage of
critical damping in both shear and compression.

The base of the model is a rigid plane but a layer with properties
similar to a viscous fluid may be superimposed on this plane so that the
model better approximates a system resting on a half-space.

The program calculates and prints coordinates of frequency and wave

number in the real plane. These may be converted to graphical form,

Method of Solution

The program is based on the direct stiffness method for the analysis
of waves in multi-layered media which is described in Appendix 4. At

any given frequency the problem is reduced to the solution of the eigen-

value problem:
(1a16? + [Blk + [6] - w’M]) {w} = {0} (85.1)

which is the modified form of the secular equation for generalized Ray-

leigh waves in a multi-layered system obtained by Waas (1972), where,
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k

the eigenvalue in the form of the wave number

I

W the frequency

[A], [ﬁ], [G] and [M] are symmetric matrices whose
elements depend upon the geometry and material proper-
ties of the layered system.
{w} = the eigenvector which is a modified form of the
mode shape,
Equation (5.1) has a finite number of discrete solutions, equal to twice
the number of layers in the model after subdivisions, all or part of
which may be obtained by the program, depending upon the option chosen.
Waas' (1972) method is used to solve (Eq. A5.1) numerically.

Dispersion curves are produced by a process of prediction and cor-
rection. When a sufficient number of initial values have been obtained,
approximate solutions to Eq. (A5.1) are made by means of the predictor
described in Appendix 7. Accurate roots to Eq. {A5.1) are then found
from these approximations. This predictor-corrector curve following is
optimized by the method described in Appendix 8.

The order of procedure within the program is as follows:

1, Input problem parameters.

2. Convert input data and compute the elements of the
matrices in the secular equation.

3. Solve the eigenvalue problem, Eq. (A5.1) above, for
the first frequency. All roots are obtained.

4. Order the eigenvalues and eigenvectors in ascending
order of the imaginary parts of the eigenvalues
(wave-number). >

5, Compute characteristics of the modes of propagation
at the surface.

6. Select the first NDC eigenvalues according to input
specifications and compute coordinates of the dis-
persion curves for these modes over the specified
frequency range using the method of prediction and
correction described in Appendices 7 and 8.
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6a. If required, at each coordinate along the dis-
persion curve the eigenvectors {w} may be
modified to yield the mode shapes {v} .

7. At the final specified frequency obtain the full
set of roots to the secular equation.

8. Compute characteristics at the modes of propaga-
tion at the surface,

9.  Output the results in the format required by the
specified option.

Minor variations in the above procedure occur when some options are

selected.

Program Capabilities

The program can solve wave propagation problem in structures which
reasonably approximate the following conditions:

1. The layers are of infinite lateral extent and are
homogeneous and isotropic.

2, The materials forming the layers are either linearly
elastic or viscoelastic.

3. The lavyers are in welded contact.
4, The base of the structure is a rigid plane. Less
reliable solutions may also be obtained for struc-—
tures resting on a non-rigid half-space.
A basic assumption of the direct stiffness method is that the discre-
tized model of the structure is such that it is reasonable to assume
that all displacements vary linearly with depth within each layer. To
achieve this, the program allows the user to specify the number of sub-
layers into which the natural layering of the structure is to be sub-
divided. Lysmer and Kuhlemeyer (1969) have suggested that the maximum
depth be restricted to 1/12 of the length of a shear wave propagating
in the layer. The user should review the output and, by inspection of

the mode shapes, satisfy himself that the layering is sufficiently

refined.
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The choice of either the lumped or consistent form of the mass
matrix [M] 4is open to the user. A mass matrix which is a combination
of the two types may alsoc be specified. (Ref. Kuhlemeyer and Lysmer,
1973).

An option is available which allows the base of the model to simu-
late a viscous fluid, the properties of which are such that energy ar-
riving at its upper boundary is largely absorbed rather than reflected

back into the overlying structure, This option may be used when a

L1

structure resting on a half-space is to be modelled. The theoretical

basis for this analogy is given in Appendix 4. Not all of the impinging

energy is absorbed, however, and results obtained should be critically

reviewed.

Eq. (5.1) has twice as many roots as there are discrete layers in

the sub-divided structure. These roots are obtained by the equation
s solving routine In an order unrelated to the participation of the cor-
responding mode in the total surface motion. As secular lines are fol-
lowed through the frequency range the modes which are represented may
change their contribution to the total motion. Thus, a2 fully comsistent
scheme for sorting the roots is not possible. At each initial frequency
roots are sorted in ascending order of the imaginary parts. In many
cases this allows the dominant modes tc appear first in the list and 2
pre-selected number may be chosen for further analysis. This simplified
system does not guarantee that all modes of primary interest will be at
the head of the tabulation so that the user should review the results

to check for the presence of other significant modes in the body of the

L2

list,

The secular lines defining the dispersion of waves in elastic
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structures contain a large number of singularities and consist of
families of curves in complex space. The curve following method used

by the program is modified to accommodate a number of singularity types
which occur in this type of problem, but difficulties may be encountered.
If this is the case, the problem should be approached on a piece by
piece basis using a small frequency range at each step. The dispersion
curves are presented at output in the form of the projection of the
secular lines onto the real plane,

Dynamic storage is used so that the program may be run for a model
containing a number of layers limited only by the capacity of the com-
puter. However, the reliability of the numerical resuilts for systems
with an excess of about 40 layers in uncertain. The number of layers
used should be kept as small as is compatible with the other require-

ments of the discretization.

Data Inguts

The data are input from punched cards using the format shown below.
Any compatible system of units may be used but the frequency must be

in radians/second.

CARD
GROUP FORMAT COLUMN DESCRIPTION
A 7110 1-10 LAYERS - No., of layers in
the model before sub-
division.
11 - 20 NLT - Total no. of layers
after subdivision.
21 - 30 NBAS - Set as follows:
0 4if base of model is
rigid.

1 4if base of model is
energy absorbing viscous
layer.




. 31 - 40
41 - 50
51 - 60
61 - 70
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RQP - Set as follows:

0 if standard output is
required

1 if dispersion curve for
a single curve is
required.

2 to obtain characteris-
tics of surface waves
at a single specified
frequency,

NVEC - Set as follows:

0 if mode shapes are not
required as output

1 if mode shapes are re-
quired as output.

NDAR - Set as follows:

0 if dispersion curves are
to be plotted on line
printer or Calcomp
plotter.

1 1f graphical display is
not required.

NTC - Set as follows:

0 if graphical plotting
best suited to Calcomp
plotter is required.

1 if graphical plotting
best suited to line-
printer is required.

Note: Depending upon the option chosen the following modifications to

this card may be made.

OPTION SWITCH SETTING

NOP 2

NDAR 1

Fields which may be left
blank

41 - 50 NVEC
51 - 60 NDAR
61 - 70 NTC

61 ~ 70 NTC




B 2E10.5
¢ 3El0,5,
110

-

this card may be

OPTION
SWITCH

NOP

i 3

11 - 290

21 - 30

31 - 40

made.

SETTING
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WLP - the percentage of the
matrix [M] which is equiva-
lent to the lumped mass
matrix

WCP - the percentage of
matrix [M] which corre-
sponds to a consistent mass
matrix

OMF - The initial frequency
at which the analysis is
commen ced,

OML - The frequency at
which the dispersion curves
are terminated,

DOM ~ Maximum step size
control, The maximum range
between frequencies at
which coordinates of the
dispersion curve are com-
puted is (lOML-OMF,)/DOM

NDC - The number of modes
whose dispersion curves
are to be followed.

NDC < 2 x NLT.

If NOP din card group A =
1 then NDC = 1,

Note: Depending upon the option chosen the following modifications to

Fields which may be left
blank

11 - 20 OML
21 - 30 DoM

31 - 40 NDC
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D 110,6E10.5 1 -10 NL - No. of sub-layers into
which main layer is to be
divided.

11 - 20 DL - Thickness of main layer.
21 - 30 VS - Velocity of S-wave in
layer,

31 - 40 VP ~ Velocity of P-wave in
layer.

41 - 50 BS - Percentage of critical
damping in shear for layer
material,

51 - 60 BP — Percentage of critical

damping in compression for
layer material,

61 ~ 70 Ril ~ mass density of material
in layer,

Note: Card group D contains one card for each main layer of the model;
i.e., No. of cards = LAYERS.

E. 2E10.5 1-10 S(MA) - the real part of the
complex number which approxi-
mates the wave-number of the
mode whose dispersion curve

is requirved.

11 - 20 S(MA+1) - The imaginary part
of the above complex number.

Note: If NOP in Card Group A is 0 or 2, this card is omitted.
Note: A new model may be analyzed by continuing the input data cards

commencing again at card group A,

Program Options

The options available in the program mainly control the detail
of the printed output. Their operation has been described under Data
Inputs.

If a dispersion curve for a single mode is to be constructed,

the option switch NOP is Card Group A above is set equal to 1. In this
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case an approximation to the desired root at the initial frequency is
obtained from input {Card Group E). Because the eigenvector is an
important factor in influencing the trend of iteration, the desired
root may not be reached in all cases. The user should check to ensure

that a satisfactory result has been obtained.

Printed Qutput

The printed output consists of a reformated playback of the input
data and a tabulation of the results according to the chosen option.

See sample output Fig. A5.4.

Other Outputs

If the Calcomp graphical display unit is used the postprocessor
produces a deck of cards in binary code. These are used as input to

the Calcomp plotter.

Sample Run

A sample problem for program SPRDSP is shown in Fig. A5.2. The

input data is shown in Fig. A5.3 and the resulting output in Fig. AS5.4.
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SECTION 3: SYSTEM DOCUMENTATION

Computer Equipment

Program SPRDSP was developed on a CDC 6400 computer with k core
memory. The computer uses 60-bit word length with fleating point arith-
metic performed in single words. The core cycle time is 1.0 U sec.

per memory bank but interlacing up to 10 memory banks is possible.

Peripheral Equipment

The following peripheral equipment was used during development of
this program: CDC 405 card reader, IBM 1403 line printer, Model 663

Calcomp Plotter and a CDC 415 card punch.

Source Program

The source listing for SPRDSP and subroutines SETUP, ASMBL, MLTYSOL,
EIGSOL, FLES, SORT, CHARIC, CURVS, GRPVL, MODSH and DARLUN are shown in

Fig, A5.1,

Variables and Subroutines

The principal variables in the program are as follows:

LAYERS =~ the number of layers in the prototype (integer)

NLT - the total number of layers in the model after sub-
division of the prototype layers (integer)

NL2 ~ 2 x NLT (integer)

oM — frequency

OMF — the initial frequency (real)

OML - the final frequency (real)

DL - depth of a prototype layer (real)

TH(I) — depth of model layer I (real)

Vs - velocity of propagation of shear waves (real)




1Kd

E

VP

BS
BP
RHO
G(I)
ALAM(T)
A1(T)
A3(1)
B2(I)
B4(I)
W1(I)
W3(1)
G1(1)
G3(1)
C1(I)

C3(I)

VA

GV

P(I)

S
The following

si, $2, X .

utility storage arrays are used:

velocity of propagation of compressional waves
(real)

percent of critical damping in shear (real)
percent of critical damping in compression {real)
mass density (real)

shear modulus of layer I (complex)

Lamé's constant for layer I (complex)
element of matrix [A] (complex)

element of matrix [A] (complex)

element of matrix [ﬁ] (complex)

element of matrix [ﬁ] (complex)

element of matrix [M] (real)

element of matrix [M] (real)

element of matrix [G] (complex)

element of matrix [G] (complex)

element of matrix [C] (complex)

element of matrix [C] (complex)

array containing eigenvalues (wave numbers)
(complex)

array containing eigenvectors (complex)
array containing mode shapes (complex)
group velocity (complex)

array containing coordinates of the dispersicn
curves (real)

step-size in frequency for curve following
predictor (real)

general storage array (real)

v1, v2, Ui, U2, R1, R2,

184
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The program consists of the following parts:

1.

SPRDSP. Main program for input, output and storage
allocation. Calls SETUP, ASMBL, MLTYSOL, SORT, CHARIC,

CURVS and DARLUN,

Subroutine SETUP, Converts input prototype layer proper-

ties into elastic constants and subdivides layers.

Subroutine ASMBL. Computes elements of matrices [A],

[1;} and [C] .

Subroutine MLIYSOL, Finds the NI2 eigenvalues and
eigenvectors of the secular equation ([A]K2 + [Blk +

[c]){w}={0} . Calls EIGSOL.

Subroutine EIGSOL., Finds individual eigenvalues and
eigenvectors of ([A]k2 + [Bik + [cD{w} = {0} by

method described by Waas (1972). Calls FLES.

Subroutines FLES. Solves set of symmetric simultaneous

equations.

Subroutine SORT. Sorts eigenvalues in ascending order

of their imaginary parts.

Subroutine CHARIC. Computes characteristics of modes

of propagation of the surface wave. Calls GRPVL.

Subroutine CURVS. Produces coordinates of the projection
onto the real plane {dispersion curves) of selected modes
of propagation. An optimized predictor is used as described
in Appendices 7 and 8. The corrector is Waas' (1972) method

for finding eigenvalues of (IA]k2 + [Blk + [Ci){w} = {0} .
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Special modifications are used to deal with certain
singularities which may occur. Calls ASMBL, EIGSCL,

MODSH and GRPVL.

10. Subroutine GRPVL. Computes the group velocity of modes

of surface wave propagation.

11. Subroutine MODSH. Obtains the modes shapes {v} from

the eigenvectors {wl} .

12. Subroutine DARLUN. Prepares output for use with graphical
display systems. Cal University of California library
package GDSLIB, The graphical display post-processor is
an absolute overlay which takes data produced by a sub-
routine DARLUN as input and produces control data for

graphical display units as output.

13. Library Subroutines, Subroutines for integer to real
conversion (FLOAT), computation of square Toots (SQRT},
a complex number from two real arguments (CMPLX), complex
gquare roots (CSQRT), absolute (ABS)’complex absolute
(CABS), the real part of a complex number (REAL), the
imaginary part of a complex number (AIMAG), and the
minimum of a series of real numbers (AMIN1) are required

and are supplied by the system.

Data Structure

Input is read from file INPUT. Output is written on file OUTPUT.

The program creates the file TAPE 99 which is used to store the output

of the graphical display post—processor.
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Storage Requirements

The program uses dynamic storage. The principal arrays form
part of the blank common S . The required length of S depends upon
the size of the problem to be analyzed. The length may be adjusted
by replacing card No. 5 in the program (See 1listing Fig. A5.1). The
length of S should be approximately no shorter than defined by the

longer of:

8 NLT2 + 96 NLT + 200 (A5,2)

16 NLT® + 58 NLT + 200 (45.3)

Length of §

It

Length of S

where NLT is the total number of sub-layers in the model,

The length of S as defined in card No. 5 is in decimal units. Ex-

cluding the blank common the program requires about 60,000 octal words

of storage.




"

SECTION 4: OPERATING DOCUMENTATION

Operator Instructions

There are no special operator instructions.

Run Time

Execution time depends upon the number of layer in the model, the
output option chosen and other problem parameters., The sample problem
with two main layers and a total of ten sublayers over a rigid base was

executed in approximately 30 secs on the CDC 6400 computer.
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FIG. A5.1
LISTING OF PROGRAM SPRDSP

(The next eleven pages form Fig. A5.1)
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APPENDIX 6

RHEOLOGICAL RESPONSE OF SOILS AND BITUMINOUS CONCRETE
SUBJECTED TO DYNAMIC LOADING

Soils, rocks, bituminous concrete and stabilized natural materials
are, in general, complex multi-phase systems whose behavior may be de-
pendent upon a large number of environmental factors including: pres-
Sure, stress history, loading conditions and temperature, In addition,
the theoretical analysis of structures composed of these materials is
often difficult, especially if results suitable for practical applica-
tion are to be obtained. To simplify analysis it has been traditionally
assumed that the rheological properties of these materials are elastic.
The limitations of this approximation, particularly in situations in-
volving dynamic loading, has encouraged experimental work to determine
more realistic descriptions of materials properties. Experience has
shown that some form of viscoelastic model, such as the Kelvin~-Voigt
(Hardin, 1965) or the Maxwell (Freudenthal, 1950) type, can satisface
torily represent these materials. This does not imply that these ma-
terials, especially soils, are in fact viscoelastic material, or that
they necessarily exhibit internal damping which is the result of viscous
behavior; The models are simply convenient tools with which to charac-

terize their empirically observed behavior.

Complex Modulus Representation

If the rheclogic behavior of a material can be characterized by a
viscoelastic model, its stress strain behavior, when subjected to loads

varying harmonically in time, may be represented by complex moduli,
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The stress-strain relation under uniaxial conditions may be ex-

pPressed as

¢ exp (iwt) = E € exp (iwt) (A6,1)
where:

(o = cl + 102

£ = el + iez

E(w) = El(w) + i Ez(w)

are the complex stress, the complex strain and the complex modulus re-
spectively, « 1is the angular frequency and i = V= 1 , The subscript
1 denotes the real component and the subscript 2 the imaginary compon-
ent. The complex stress and strain may be represented by a pair of
vectors rotating at the frequency « about the origin of the complex
plane as shown in Fig, A6.1. At any instant in time, the actual stress
and strain are the projections of the vectors onto the real axis. The

real compeonent FE., of the complex modulus is the modulus of strain

1
which is in phase with the stress and its imaginary component E2 is
the modulus of strain which is 90° out of phase with the stress. El
is associated with the elastic phenomenon in which stored energy is
recoverable and E2 is associated with the internal damping phenomenon
(modeled here as a viscous behavior) in which energy is dissipated.

Due to the internal dissipation of energy the strain vector lags
behind the stress vector by an angle ¢L , known as the "loss angle"

the tangent of which is known as the "loss tangent;" from its associa-

tion with energy loss. The loss tangent is defined by:
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Tan ¢; = E,/E (A6.2)

2/ 1

In addition to Young's modulus, E , the complex representation
may be employed with any of the other usual moduli. This allows the
relationships between the complex moduli of a material, which may be
approximated by an isotropic, linearly wviscoelastic system, to be de-

fined in a manner analogous to that for elastic materials, e.g.,

- _ G(E - 2G)
A=+ Id, = (3¢ = E (A6.3)
and
Vv, iy, = ae-l (46.4)
1 2 2G *

in which A 1is the complex Lame's constant and Vv is the complex
Poisson's ratio and the moduli G and E are both in the complex
form.

The wave velocities o and B , of P and S-waves respectively,

may also be expressed in the complex form:

. _ /A + 2G
oy + i, = — (A6.5)

- . G
B=16 +16, =/7. (46.6)

Q
[l

If the imaginary components of both A and G are equal to zero
then o and 82 vanish and Egqs. (A6.5) and (A6.6) define the veloci-
ties of propagation of body waves in a linearly elastic media.

Values of the complex moduli E and G are commonly obtained from
longitudinal and torsional vibration test on cyclindrical samples and

are related to parameters obtained from these tests as follows:
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Logarithmic Decrement (Richart, Hall and Woods, 1970),

6 = in ——— (A6-7)

where Z and 2Z

1 , are successive amplitudes of motion.

For small damping
§ = ZWBfC (A6.8)
where ch is the fraction of critical damping.

Decay Factor,

Decay Factor = exp (- §) (A6,9)
Loss Angle,
Tm1%‘=ﬁm (A6.10)
For small damping
Tan ¢L = Zch (46,11)
Complex Shear Modulus,
‘ For small damping
G = Gl {1+ Zich) (A6,12)

Specific Damping Capacity (Richart, Hall and Woods, 1970),

_ Energy absorbed in one cycle (A6.13)
cd ~ Potential energy at maximum strain

A

By reference to Fig. A6.12,

216
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A = Area enclosed within hysteresis loop
cd Area AAOC

Hysteretic Damping or Damping Ratio (Jacobson, 1930),

-
n

d Acd/lm
For small damping

fc:/‘rT ‘

Attenuation

tion is not necessarily due to internal damping.

reasons

i.

L

"

3.

It is important to note that an attenuation

for attenuation.

Geometric Attenuation

This results from the dissipation of energy away
from a localized source into a body. With increasing
distance from the source the energy density is reduced

as more volume becomes involved in the excitation.

Internal Damping
Due to conversion of transmitted energy from a
potential or kinetic form inte some other form., Energy

is usually dissipated by conversion into heat energy.

Interference Attenuation

In certain circumstances wave modes may interact
in such a way as to produce a surface wave which at-
tenuates with increasing distance from the source. No

energy is lost in this case.

(A6.14)

(A6.15)

(A6.16)

of an amplitude of mo-
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In all practical situations internal damping is present to some

degree so that attenuation will always be observed.

Dynamic Soil Properties

The stress-strain relationships of most soils subjected to sym-
metric cyclic loading are curvilinear as shown in Fig. A6.2. This be-
havior is represented by the secant modulus, which is determined by the
extreme points on the hysteresis loop, and the damping factor, which is
proportional to the area inside the loop., If complex moduli are used
to define the behavior then the actual hystersis loop is approximated
by an elliptical loop enclosing an area equal to that of the actual loop
and with a principal axis of the same slope. Thus the secant modulus
of the type illustrated in Fig. A6.2 is equivalent in the real component
of the corresponding complex modulus.

A study of the factors affecting the shear moduli and damping fac-
tors of soils was undertaken by Hardin and Drmevich (1970). They sug-
gested that the following factors are of primary importance:

Strain amplitude

Effective mean principal stress

Void ratio

Number of cycles of loading

Degree of saturation of cohesive soils
and that the following are less important factors:

Octahedral shear stress

Overconsolidation ratio

Effective stress strength parameters

Time effects

The interrelationship of the parameters is very complex and presents
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a difficult problem if definitive and comprehensive expressions are
sought to describe the behavior of soils subjected to dynamic loading.
Laboratory programs have been conducted using forced and free longi-
tudinal, tortional, shear and triaxial compression vibratory testing.
All investigations have shown that the modulus values and damping fac-
tors for soils are strongly influenced by the strain amplitude. While
many of the other factors listed above, especially confining pressure
and void ratio, are of great importance in laboratory studies, in-situ
vibratory testing in the field has the advantage that the need to ac-
count for the influence of a majority of these parameters is eliminated.
The effects of sample disturbance is also eliminated. This fact is of
major importance when saturated clays are involved.

However, in many applications, the strain amplitudes induced by
vibratory testing are very much smaller than those generated by the
loads to which the structure is subjected during use. Thus, results
from vibratory in-situ tests can be expected to yield higher values of
moduli and indicate less damping than would be appropriate for use in
the funetional evaluation of structures.

Some typical strain ranges are given in Table A6.1.

Table A6.1
Strains Induced by Various Dynamic Loads

Loading Condition Approximate Strain Range
Laboratory tests to determine hysteretic -2 .
stress—strain relationships 10 © to 5%
-4 -2,
Laboratory forced vibration tests 10 to 10 "%
-3 .
Laboratory free vibration tests 10 ~ to 1%
-4,
Vibratory field tests =5 x 10 "%
-3 to 10—1%

Highway structures subjected to traffic load 10




-
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Seed and Idriss (1970) have made a comprehensive review of data
available from a wide variety of dynamic tests on soils and have pro-
posed a method by which the moduli and damping properties obtained from
in-situ vibratory tests may be used to obtain gimilar properties for the
description of behavior at strain amplitudes greater than those induced
by the test. Fig. A6.3 shows the variation with shear strain of the
ratio of shear modulus at strain <y to shear modulus at a shear strain
of 10_4%. As the results fall within a relatively narrow band a
reasonable approximation to the modulus versus shear strain relation-
ship for any sand may be obtained by determining the modulus at a very
low strain level, such as by wave propagation methods in the field,and
then reducing this value for other strain levels in accordance with the
average (full) line in Fig. A6.3.

A similar method may be used in the case of damping. Fig. A6.4
shows the result of Seed and Idriss, (1970) study of data relating
damping ratios to shear strain for sands.

Information about the dynamic response (particularly the damping)
of soils other than sand is severely limited. Data gathered for satu-
rated clays by Seed and Idriss (1970) are summarized in Figs. A6.5 and
A6.6. It seems likely that moduli and damping factors for gravelly
soil will decrease, with increasing strain amplitude, in a manner
similar to that for sands. While further data is lacking, it is sug-
gested that modulil obtained from a test on gravelly soils may be modi-
fied to approximate values at other strain amplitudes by extrapolation
in accordance with the method proposed for sands.

The fraction of critical damping observed for soils subjected to

many practical loading situations (e.g., soils beneath foundations of
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vibratory machines) is very small. Values for shear deformations may
typically vary from 2 to 5% and for compressional deformations are even
less. Therefore,the use of viscoelastic theory for analysis may be
considered unwarranted, especially as determination of the scant modulus
may involve errors of the order 10 to 20%. However, the convenient
method of complex moduli provides a simple means to provide a more
realistic model and the inclusion of damping eliminates certain singu-

larities which may occur in the analysis.

Rheologic Response of Bituminous Concrete

The rheologic behavior of bituminous concrete is also complex and
it exhibits particular sensitivity to duration of loading, frequency
of loading and temperature. Material properties obtained in the field
by wave propagation methods again have the advantage that the need to
consider the influence of a majority of the variables is eliminated.
There remain, however, three major areas whicﬁ must be accounted for
when applying the results obtained from these tests to the analysis of

structures under working loads.

Temperature

Bituminous concretes are very sensitive to temperature (Monismith,
Secor and Secor, 1965) and the temperature variations within a structure
are themselves dependent upon many of the elements of climate, such as
air temperature, wind conditions and cloud cover (Monismith, 1970).

For this reason, accurate records of climatic condition at a site should

be made at the time of testing.

Creep

Although the wave-propagation method involves steady-state dynamic

225




”»

1=

-

A

loading, neither the duration of the test nor, in general, the magnitude
of the loading is sufficient to stimulate creep behavior in bituminous
concrete, In use, however, particularly at high temperature, these

materials often exhibit significant time dependent behavior. (Pagen,

1965).

Frequency

A study by Pagen (1965) has shown that the moduli and damping of
asphaltic materials are sensitive to the frequency of dynamic loading.
Although‘early applications of the wave-propagation method involved an
attempt to simulate actual loading conditions (Van der Poel, 1951),
most modern techniques involve a wide frequency range which is designed
to meet the requirements of the test itself, Fig. A6.7 shows the re-
sults of tests conducted by Pagen (1965) relating Young's modulus (in
terms of the absolute |E| of the complex modulus E) and the damping
(in terms of the loss angle ¢L) to frequency for a typical bituminous
concrete.

The ability to predict complex moduli for bituminous concretes at
some functional loading and temperature conditions from tests conducted

under some other conditions is the goal of continuing research. (e.g.,

Dehlen, 1969, Pagen, 1963, and Secor, 1961).
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APPENDIX 7

A NUMERICAL PREDICTOR FOR CURVE FOLLOWING USING SLOPES

In some cases the slope at a point on a curve may be determined by
a method which does not rely upon numerical differentiation using the
coordinates of adjacent points. In these cases high order predictors
may be designed, which take advantage of the accuracy with which slopes
can be calculated, to improve the performance of numerical curve fol-
lowing methods. Such a predictor, of varying order up to the fourth,
with the capability to deal with varying step-size is developed below.

Consider the point (xk+l R yk+1) on the curve shown in Fig, A7.1l.

The ordinate Yiegqp WY be expressed in the form of the Taylor expan-—

sion
- =2
20 g "0 s (A7.1)
Yg+1 Ve T IV TIv YR .
where
2
1 dyk 1] d yk
yk = 5{1: ] yk = _:2— s etc.
dxy
In general
- =2 =3
h y“ h y"l h
_ o1 'k o'k D _an A7.2
Vpn SV~ TIT tTar T3 e Tt (47.2)

for n=1, 2, 3, ++.

A method is required which yields an approximation §k+1 to the ordi-

nate ¥, ., - The order n of the approximation will depend upon the

point at which the expansion is terminated. This approximation may be

expressed in the form:

7. oy ' J ' (A7.3)
Va1 = Yk T Bo logyg + 0¥y« F RN
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and using (A7.2) and (A7.3)

o

—_— - _ ,
¢ Tkl Tk + hoaoyk
h y!l h le! h yn"
h | 1"k 1 17k
+ hyag <y} =Tt TET o cEre Tt e
o 2
h,y' hoy !t
n ' 27k 27k
+ hOO{'Z yk - l! + 2! - Tees a0 (A7.4)
| =2
‘ s e e m n s + -h-og y' - hnyk + hnyk _
0 n k l! 2! R

The terms aj are unknowns which may be evaluated by a comparison

of Eq. (A7.1) and (A7.4). For defined by Eq. (A7.4), to approxi-

T4l

mate in Eq. (A7.1) the coefficients of the similar terms y£ s

Y+l

yﬂ , etc,, must be identical. This comparison yields the following set

£ of equation.

Oto + al + 0¢2 rae T+ Ol.n = 1
_ _ ~ B,
hlal + hzaz ees F hnun = -5 (A7.5)
—2
h
—2 -2 —2 . Ny
hlul + h u2 ese T hnan = 3

n —h
(" l) ho
n n+ 1l

Eqs. (A7.5) may be solved for any order n to vield values of o for

use with Eq. (A7.3).

At this stage it is convenilent to redefine the parameters involving
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the step size as follows (see Fig. A7.1):

80 that

g =% =% =h
=% -x_4°h 47.6)
hy =% 1~ % g =By -hy
and so on
By = By
h, =h
ol (A7.7)
h, = h +h,
h.=h +h,+h

3 1 2 3

and so on

This redefinition when used with Eq. (A7.5) gives the following expres-—

sions for the terms

2nd Order

3rd Qrder

uj in Eq. (A7.3):
o = 1 -0
0 1 (A7.8)
o = -1/2 {ho/hl}
= 1-0 -0
1 g (A7.9)
= - E.EEEE- 2hg + 30, + 3b, .

h!

1 1_1-9 2h0 + 3hl
6 h, hl + h,
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4th Order
ao = 1l - al - a2 - a3
] (ho oy (hy + By aglhy + hy + hy)
% == &t h + h
1 1 1
2
. By [6ny + by + 8hgh + 4ngh, + 4ghy + 6hyh + 6h by 100
2T T3 bR, (h, + h)
b [6n% + 3n% + 8h.h. + 4h.h, + 6h.h
D A 0 o1 02 )
3 1zi h,(h, + hy) (b, + b, + b )

0 * O - ete., known, it is now possible to

use Eq. (A7.3) to approximate the value of the function at a point

(

With the values of «

X410 yk+l) when the walue of the function is known at a point

(xk ’ yk) together with y' at this point and for a number of pre-—
ceding points. For example, if this information is available for two
peints prior to that defined by (xk . yk) in Fig. A7.1 then the
appropriate values of Og » Oy and %, may be computed as shown in
Eqs. (A7.9) and used in Eq. {(A7.3), together with the slopes y& , yé_l

and yy , and the ordinate y, , to give the approximation §£+1 to

the ordinate at %41 which is a distance h0 beyond L
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APPENDIX 8

A METHOD FOR THE OPTIMIZATION OF THE STEP SIZE IN
PREDICTOR~CORRECTOR CURVE FOLLOWING

The computational cost of curve following by predictor—corrector
methods is a function of the step size in the independent variable.
Large steps reduce the number of corrector cycles to be performed but
tend to increase the number of iterations per cycle. Small steps tend
to minimize the number of iterations in each mrrector cycle but increase
the total number of cycles. For any problem there is an optimum bal-
ance between step size and corrector iteration length which minimizes
the overall computational cost. In general terms, to achieve such an
optimization a method is required which distributes points at which
the function is to be computed in such a way as to take advantage of
the predictor's ability to perform well in regions where the function
is well behaved (e.g. nearly linear) and to recognize zones where the
predictor requires a small step size (e.g. regions of high curvature).
A method which uses the past performance of the predictor as a guide to

the optimal size of a future step is developed below.

Step~size Variation

Assume that an initial approximation }# to a root is obtained by
a predictor of order Py Then if Yy is the exact root, the error

€4 is given by
p.+1
k (A8.1)

e = v Wl 7 Gy
where h is the step in the independent variable and Ck is a con-

stant. Since & h  and Py are known, C, may be obtained from

k

¢ =X (A8.2)
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If it is desired to use the predictor to make an initial approxi-

mation, §£+1 for the next step, which results in a predetermined error
, €. » then a step size hk+l must chosen so that
pk+l
€ = CerrPrar (48.3)
Ck+l is obtained by assuming that
Ck+l = Ck (A8.4)

within a reasonably small zone.

From Eq. (A8.2), (A8.3) and (A8.4) the required stepsize is given

1

1

1

pk+
Byyq = hk{sc/ek} . (A8.5)

Eq. (A8.5) has the following properties.

1. If the error €1 obtained by the predictor at step k

was larger than the desired error €.

by < by

2. 1If ek was smaller than ec

b1 7 M

Eq. (A8.5) provides a means by which the stepsize of a predictor-
corrector curve following method may be varied to maintain an error in
the prediction which closely approximates some predetermined criterion

“ €, * The choice of this criterion will affect the overall economy of

the curve following and it is desirable to obtain an optimization of the

magnitude of €.




"
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Step-size Optimization

Let g be the cost of performing the correction from a predicted
root to the actual root. This cost is proporticnal to the number of

iterations I required to perform the correction, i.e.
g = al (A8.6)

where a is a constant related to the cost of one iteration step.

To optimize locally it is necessary to minimize the cost per unit
step in the independent variable. Thus if h is the step in the inde-
pendent variable, g/h must be minimized. This will be achieved

locally if

d(g/h) _
——{%;—— =0 (48.7)

From Eq. (AB.6) and Eq. (A8.7)

d(al/h) _
dh
or
adl _al _,
h dh h2
or
al |1
dh &
or
dI -1 . (A8.8)

d(in by

Now, assume the iterative process used by the corrector converges

at a rate n ., If € is the initial error (due to the error in the
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initial value provided by the predictor), the error after ome iteration
2

. n . . n .
is € and after two iterations ¢ ... etec., Thus after 1 itera-

I
" , n
tions the error will be € . Thus to approach the correct root to

within an allowable error of € iteration must be performed until

which may also be expressed as

n{in EO/Rn £}
i = . (A8.9)

2n{n)

If the initial value is provided by a predictor of order p then

the error in the initial guess is given by

e = cpPHL) (A8.10)

where € 1is assumed to be a constant.

From Eq. (48.10)

fne=mC+ (p+1nh

and differentiating

d(dn ) _
dne) +1. (A8.11)
From Eq. (9)
a1 -1 ., d(&n €) (A8.12)

dln by (n m(n €) d(&n h)

Using Eq. (11)

dr - (pt+1) (A8.13)

din ) (o n)in €)

The LHS of Eq. (A8.13) is equal to the LHS of Eq. (A8.8), so that
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)

_ —p+1)
L= (4n n)(&n €) (A8.14)

From Eq. (A8.9) and (A8,14)

2 2 - =p+l
n (&n 80) n (4 ¢€) T

Let x=2%n ¢, Xy = n €0 and vy = in (xO/x) then
y=1{{+1) - xo} exp * vy (A8,15)

The value y is related to the error ¢ , created by the initial

approximation resulting from the use of the predictor, as follows:
v = Qn(xo/x) {A8.16)

where x, = in €, and x = fn ¢ .,

The value of & obtained from Eq. (A8,16) is that which the pre-
dictor will achieve when a step size is used which satisfies the require-
ments of Eq. (A8.7). If the term g, in Eq. (A8.5) is set equal to this

value the step size computed will be optimal,

Summary
Eqs. (A8.5) and (A8.15) provide a technique for varying the step

size in a predictor-connector curve following method in such a way as

to minimize the overall cost, The procedure is as follows.

1. Establish an allowable bound £y om the error per-

mitted in the roots.

2, Compute the value of y from:

y={+ 1)/ -xytexp -y (A8.15)

where p = the order of the predictor and Xy = In € *

237




(14

T

238

Compute the optimum error €. in the approximation

to the root provided by the predictor from
y = dn(x,/x) (48.16)
where

in e .
c

W
I

o is a constant for any combination of allowable error
in the root €y » and order of the predictor P . Where
the order of the predictor changes from step to step, a

new computation of €. must be made for each case,

Select the optimal step size for the next step of the
curve following from

1

pk+l

h (A8.5)

w1 = M le/ed
where

hk = step size of step just completed

h = step size of step to be performed
next

€, = optimal error is the predictor estab-
lished in 3. above

£, = actual error, measured as difference
between predicted and actual root,
in step just completed

= order of the predictor used for the
step just completed

It should be noted that the step size computed by this method
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depends upon the history of the curve-following prior to the step in
question. The method does not have power of foresight to predict the

. performance of the predictor in the future. In some cases, such as in
regions of near linearity, very large steps may be proposed. If such a
region is followed by a region of very high curvature, without an inter-
mediate transition zone, the method may be unable to reduce the size of
the steps sufficiently to prevent serious loss of predictor accuracy.

Thus it is advisable to limit the maximum allowable step size., Of

L

course, in practical application, other constraints may be involved such

as the need to obtain sufficient points to allow accurate graphical

(L4

representation of the function.

Examgle

To illustrate the method, the following example will be used:

Assume a function is to be plotted by a predictor corrector method

consisting of the following parts.

x a. A Newton Divided-Difference Interpolating Polynomial

used in extrapolation as the predictor.
b. A Newton method iteration scheme as the corrector.

The allowable error on the root is i_lO_ll .

The predicter will be used in orders 1, 2, and 3 with the highest
order possible being employed depending upon the availability of points.

Egs. (A.15) and (A.16) yield the following values for £,

‘ Order of predictor, p 2
1 0.59
2 0.39%

3 0.24

v




and the step size

Eq. (48,5),

k+1
k+1

b1

will be calculated from the following forms of

hk{O.SQ/Ek}l/z for l1st order

hk{0.39/€k}l/3 for 2nd order

]

hk{0.24/6k}l/4 for 3rd order
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